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Zusammenfassung

Summen-Produkt Netzwerke (SPNs) sind ein Ansatz des Maschinellen Lernens, um die Dichteverteilung
eines gegebene Datensatzes unüberwacht zu lernen. Sie sind probabilistische Schaltkreise, welche einfache
Wahrscheinlichkeitsverteilungen durch Summen- und Produktknoten zu komplexeren Verteilungen kombinie-
ren, die das effiziente Auswerten beliebiger gemeinsamer, marginaler und bedingter Wahrscheinlichkeiten
erlauben. Obwohl sie Datensätze so modellieren können, dass beispielsweise Klassifizierung mit ihnen möglich
ist, gibt es bei ihren generativen Fähigkeiten noch viel Raum für Verbesserung.

Um auszumachen, wie die Qualität der erzeugten Daten verbessert werden kann, wird zuerst die übliche
Stichprobenwahl theoretisch untersucht. Sie führt eine Tiefensuche durch, bei der in Summenknoten ein
einzelnes Kind und in Produktknoten alle Kinder besucht werden. Wir zeigen, dass der entsprechende
Algorithmus in linearer Zeit in der Größe des SPNs terminiert, beweisen dass er Stichproben gemäß der vom
SPN modellierten Wahrscheinlichkeitsverteilung ohne Verzerrung liefert und dass er numerisch stabil ist.

Wir zeigen dann auf, wie dennoch inkonsistente Stichproben in den gängigen heuristischen Strukturen
durch die Unabhängigkeitsannahmen in Produktknoten auftreten können, und leiten daraus eine verbesserte
Stichprobenprozedur ab. Die Kernidee ist dabei in dem aktuellen Durchlauf den bereits gegangenen Pfad zu
merken, und dadurch im weiteren Verlauf eine informierte Wahl eines Kinds von einem Summenknoten zu
treffen. Wir präsentieren eine Q-Learning-Formulierung um solch eine Führung zu lernen und diskutieren
formale Eigenschaften sowie Limitierungen. Wir zeigen, dass normales und doppeltes Q-Learning sich hier
empirisch ähnlich gut verhalten und diskutieren typische Konvergenzdauern.

Ein quantitativer Vergleich wird auf drei verschiedenen Graphenstrukturen moderater Größe mit unterschied-
lichen Konditionierungsmustern durchgeführt, bei dem fehlende Teile von Bildern aus sechs Datensatzvaria-
tionen durch Stichprobenwahlen zu rekonstruieren sind. In 24 aus 30 Fällen konnte der mittlere quadratische
Fehler reduziert werden, wobei die Verbesserung in drei Fällen bei über 35% lag. In den anderen sechs Fällen
wurde keine Verbesserung oder eine kleine Verschlechterung beobachtet. Wenn dieselbe Führung für die
Vervollständigung mit der wahrscheinlichsten Erklärung verwendet wird, liegt die Verbesserung bei über
43%. Eine darauffolgende qualitative Gegenüberstellung bestätigt einige Verbesserungen, jedoch bleiben die
wahrnehmbaren Unterschiede klein.

Im Ergebnis zeigen wir, dass geleitete Stichprobenwahlen eine geeignete Methode zur Verbesserung der
Qualität generierter Daten in SPNs sind. Wenn sie auf weitere Traversionsreihenfolgen und die Verwendung
eines Funktionsapproximators statt einer Q-Tabelle erweitert wird scheint es wahrscheinlich, dass die Technik
auch auf größeren SPNs erfolgreich wäre.
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Abstract

Sum-product networks (SPNs) are a machine learning approach used to model the density of a given dataset
in an unsupervised fashion. They are probabilistic circuits that combine simple distributions with sum and
product nodes to formmore complex ones while still allowing for tractable inference of arbitrary joint, marginal,
and conditional probabilities. While being able to model many datasets to a degree that facilitates, for example,
classification tasks, their generative abilities leave much room for improvement.

To investigate how to improve the quality of generated data, first, the standard sampling procedure is analyzed
theoretically. The procedure runs a depth-first search on the graph where in a sum node a single child and in
a product node all children are visited. We show that the algorithm runs in linear time in the size of an SPN,
proof that it samples from the distribution encoded by the SPN without introducing any bias, and show that it
is numerically stable.

We then demonstrate how inconsistent samples can occur nonetheless due to the independence assumptions
in product nodes of typical heuristic structures and devise an improved guided sampling procedure. The
core idea is to remember which parts of the SPN were traversed in the current sampling run and therefore
continue to select subsequent sum node children in an informed way. A Q-learning setup to learn such a guide
is provided along with a discussion of its formal properties and limitations. Empirically, normal and double
Q-learning are shown to perform similarly on this task and typical convergence times are discussed.

A quantitative comparisonwas carried out on three graph structures of moderate size with different conditioning
shapes and six image dataset variants, where the task was to reconstruct a missing part of an image by sampling.
In 24 out of 30 cases, the mean squared error of the reconstruction was reduced, and in three cases by over
35%. In the other six cases, no improvement or a small deterioration was observed. If the same guide is used
for most probable explanation completions, the improvement even reaches over 43%. While a subsequent
qualitative comparison confirms some improvements, the perceptual difference is small.

In conclusion, we show that guided sampling is a suitable approach to improving the sample quality of SPNs.
If extended to different graph traversal orders and by the use of function approximators instead of a Q table,
the method seems likely to be successful on larger SPNs too.

v





Contents

Abbreviations and Notation ix

Figures, Tables and Algorithms xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Sum-Product Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Generalization to Arbitrary Leaf Distributions . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Learning: Structure and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Maximum A-Posteriori and Most Probable Explanation . . . . . . . . . . . . . . . . . . 13
2.1.6 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Evaluation of Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Nearest Neighbor Distance and Reconstruction Errors . . . . . . . . . . . . . . . . . . . 16
2.2.2 Other Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Exponential Family Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Double Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 Deep Generative Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.3 Sampling in SPNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Methods 26
3.1 Standard Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Unbiasedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Guided Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Reinforcement Learning Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Relation of Standard and Guided Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Experiments 38
4.1 Proof of Concept on Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



4.2 Parameter and Structure Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Choice of Leaf Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 LearnSPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Poon-Domingos and Binary Tree Structure . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Reconstruction Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Q-Learning Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Comparing Standard and Guided Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.1 Quantitative Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6.2 Qualitative Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Exploring Variations of Conditioning in Sampling and MPE . . . . . . . . . . . . . . . . . . . . 57

5 Conclusion and Future Work 61

Appendix 63
A.1 Analytical Solution for Sampling from the Synthetic Dataset . . . . . . . . . . . . . . . . . . . 63
A.2 Additional Results of the Quantitative Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.3 Additional Results of Exploring Variations of Conditioning in Sampling and MPE . . . . . . . . 66

Literature 68

viii



Abbreviations and Notation

List of Abbreviations

AIML Artificial Intelligence and Machine
Learning Lab at TU Darmstadt

AI artificial intelligence

AC arithmetic circuit

CPU central processing unit

DAG directed acyclic graph

EF exponential family, a type of
distribution

EM expectation-maximization
algorithm

FID Fréchet inception distance

GAN generative adversarial networks

GPU graphics processing unit (here, for
general purpose computing)

i.i.d. independently and identically
distributed

KID kernel inception distance

MAP maximum a posteriori

MDP Markov decision process

MLE maximum likelihood estimate

ML machine learning

MMD maximum mean discrepancy

MNIST the modified dataset of grayscale
digits of the US National Institute
of Standards and Technology

MPE most probable explanation

MPN max-product network

MSE mean square error

NN (artificial) neural network

PDF probability density function

PD Poom-Domingos SPN structure

PMF probability mass function

RAT-SPN a randomized and tensorized SPN
structure and implementation

RGB image data format: red, green,
blue

RL reinforcement learning

RV random variable

SPN sum-product network

SVHN a dataset of house number signs
from Google Street View®

VAE variational autoencoders

ix



Notation of Symbols and Operators

N the natural numbers

R the real numbers

×,×n
i=1Bi the Cartesian product (over a

range of sets Bi)

⊎,
⨄︁n

i=1Bi disjoint union (of sets Bi)

| · | the absolute value

∥ · ∥ the norm of a vector

AT the transpose of the vector or
matrix A

Ω sample space

X, Y , Xi a single RV

X, Y a set of RVs

x, y, xi a single value an RV can take

x, y, xi a tuple of values of an RV set

∗ missing evidence for an RV X

val (X) set of all values of an RV X

x[Y ], x[Y ] the projection of x onto Y /Y

X the empirical mean of an RV X

Var(X) the variance of an RV X

E[X] the expectation of an RV X

IX=x indicator RV for the case that X
takes the value x

U (a |A) the uniform distribution over the
set A

Cat (i | b) the categorical distribution with
parameters b

B (x | p) the Bernoulli distribution with
parameter p

N (µ, σ2) the univariate Gaussian
distribution with mean µ and
variance σ2

N (µ, Σ) the multivariate Gaussian
distribution with mean µ and
covariance matrix Σ

DKL(P || Q) Kullback-Leibler divergence of
distribution Q to P

S, SA an SPN

ch(N) the set of child nodes of a node N

pa(N) the set of parent nodes of a node
N

sc(N) the scope of an SPN node N

M an MDP

R the set of rewards in an MDP

[ ] the empty list

[a, b, ] the list of two elements a and b

A ∥B the concatenation of lists A and B

| · | the length of a list

a← b assign value b to variable a

a ↝B(a) assign a probabilistic value
sampled from distribution B to
variable a

O( · ) big O/Landau notation of
complexity theory

IAlgorithm the probability induced by a
certain probabilistic algorithm

x



Figures, Tables and Algorithms

List of Figures

1.1 Image inpainting results presented by Yu et al. [69, Fig. 1]. Left: Original images, Middle:
White area marks the removed parts of the images, Right: Reconstruction of the missing parts
combined with the unchanged images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Generated images using StyleGAN, taken from [26, Fig. 10]. The images reflect the distribution
of the LSUN bedroom dataset [68], on which the model was trained on. . . . . . . . . . . . . 3

2.1 A simple, valid SPN which shows sum and product nodes as well as leaves over two random
variables X and Y that can take either of the Boolean values 0 and 1. The top node is the
unique root of the SPN. Note that while this SPN has a very regular structure, this generally
does not have to be the case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Visualization of the SPN SA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Visualization of the SPN SB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Logical connection of the central properties of SPNs related to validity. . . . . . . . . . . . . . 10

2.5 Illustration of the LearnSPN procedure which jointly learns structure and parameters of an SPN
given some training data. The training set is split recursively and each time either a sum node
over data clusters of the same RVs or a product that partitions the set of RVs is grown. Taken
from the original publication [16, Fig. 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 In episodic reinforcement learning, the agent repeatedly chooses actions and receives a new
observation of the environment along with a reward, from which it has to learn how to act best.
Note that at the dashed line the notion of t+ 1 changes to t as the next iteration begins. . . . . 19

2.7 Visualization of the generative capabilities of SPNs using the Einsum Networks implementation
[48]. The results clearly show the blocky nature stemming from the PD structure which assumes
independencies between rectangular regions of the images. This results in separate sampling
processes in the children of products and introduces clearly visible inconsistencies that are the
major shortcoming that shall be addressed in this thesis. . . . . . . . . . . . . . . . . . . . . . 25

xi



3.1 An illustrative SPN over a dataset consisting of digits 0 and 1 as shown in the upper left corner
(copied from the MNIST dataset [31]). The model boldly assumes that the left- and right-hand
sides of an image are independent: S(L,R) = S(L)×S(R). In each of the two children, a sum
over two leaves each model image halves showing a 0 and a 1, respectively. Samples of those
partial images are shown below the leaf nodes. We ignore the weights in this visualization, let
us just assume that they are all equally set to w = 1/2. . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Visualization of how sampling in the SPN of Figure 3.1 can produce (a) consistent and (b)
inconsistent samples. The part of the SPN that is visited is shown in blue while the rest is grayed
out. The pink path shows the depth-first left-to-right graph traversal of the sampling algorithm.
The resulting partial images are shown at the bottom. It is apparent that the inconsistency in
the second traversal arises from choosing the wrong child in S(R), which is marked with a �. 33

3.3 This figure shows how the guided sampling algorithm can be viewed as an RL problem. The
diagram is analogous to Figure 2.6 from the foundations chapter. The environment is the graph
traversal process, which receives a sum child index at and then continues traversal to the next
sum node over possibly multiple leaves, products, and conditioned sum nodes. Eventually, it
provides the old and newly visited sum node indices path as a state st+1 and a reward rt+1 to
continue the episode at the next unconditioned sum node. . . . . . . . . . . . . . . . . . . . . 34

3.4 Illustration of the (partial) paths that occur when sampling as in Figure 3.2b. Note that the
path starts out as an empty list [ ] and each time a sum node is traversed, the index of the
chosen child node is appended (giving [0, ] and ultimately [0, 1, ]). This means that in product
nodes, the starting path of a child is the ending path of the preceding product node’s child
(here [0, ]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 This figure visualizes the synthetic dataset task and the results of learning a guide. In particular,
the SPN used in the evaluation as well as standard and guided sampling results are shown. The
Appendix A.1 also visualizes guided sampling but shows separate plots for different conditioning
modes to illustrate when guiding is most effective. . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 This illustrates how training progressed on the synthetic dataset. The blue scattered markers
on the main graph are the rewards for each episode and the moving average is shown in red
on top. The black horizontal line is the baseline of standard sampling. The right shows a
histogram of all rewards obtained from training. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Visualization of the structure of an SPN learned with LearnSPN over the MNIST image dataset
and a heatmap of the number of leaves that range over a selected sub-SPN. . . . . . . . . . . 43

4.4 This figure shows what area of the images was to be reconstructed in the different tasks in
orange. It also shows the three datasets used later in the evaluation, where MNIST and Fashion
MNIST are grayscale and SVHN are RGB color images. . . . . . . . . . . . . . . . . . . . . . . 46

4.5 This figure visualizes the precise schedule used for all Q-learning runs over an example number
of episodes of 25 000 as was used later. If the number of episodes differed, the schedules
contracted or stretched accordingly, i.e. the first reduction of ε always occurred after 60% of
the training progress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xii



4.6 Comparison of the mean reward (over 1000 samples) after training guided sampling for a
certain number of episodes on the full Fashion MNIST dataset. Separate results are shown for
the three types of structures and normal as well as double Q-learning. Note that the horizontal
scale is logarithmic and fresh runs were started from scratch for each data point to prevent
“lucky” runs to distort conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 This figure compares the mean squared error (MSE) when using standard and guided sampling
over several datasets and two reduction variants. The values were obtained by performing
2000 sampling operations. Lower values are better since they correspond to more accurate
reconstructions. The corresponding visualization for the case of MPE is provided in the appendix
in Figure A.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 These bar charts show the relative improvement of the MSE when using guided (“Q”) over the
baseline of standard sampling (100%) over several datasets and two reduction variants in (a).
In addition, (b) shows the same comparison when performing MPE in both the conditioned
sum nodes and leaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9 This figure shows randomly chosen standard and guided samples on two select structures where
a large improvement was observed by the introduction of guidance. The dataset is Fashion
MNIST reduced to the first two labels. While improvements of the right- over the left-hand
side can be seen, the difference is rather subtle. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.10 This figure is analogous to Figure 4.9 and shows example reconstructions using standard and
guided MPE instead of sampling. The images and conditioning patterns are also the same to
aid comparisons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.11 The left shows a visual representation of how often the entries in the Q table are visited. The
vertical extent shows all states in the SPN and the horizontal direction all possible actions each.
The right shows a histogram over the update counts in the cells. . . . . . . . . . . . . . . . . . 55

4.12 This figure shows how the distribution of rewards shifts as the training of the guide progresses.
To this end, all 25 000 reward values were collected, divided into 10 equal parts, and the
distribution was plotted in a slightly different color each. . . . . . . . . . . . . . . . . . . . . . 56

4.13 Improvement of the various sampling variants SampleWeights, SampleLikelihood, Sample-
Standard, and guided sampling with Q-learning compare relative to the Off baseline (100%).
More is better. The average rewards were estimated over 2000 samples and the absolute error
is shown in the Appendix A.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.14 Improvement of the various MPE computation variants MaxWeights, MaxLikelihood, MPE, and
guided MPE with Q-learning over the Off baseline, analogously to Figure 4.13. The absolute
error is shown in the Appendix A.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.1 This contrasts how different occurrences of the conditioning evidence E in the path encoding
may result in vastly different samples. In this concrete SPN from Figure 4.1b, X is determined
before Y . Therefore, when reconstructing Y given X in (a) the results are consistent, but the
other way around in (b) they are only sometimes, as discussed in the analytical inspection above. 64

xiii



A.2 This figure compares the mean squared error (MSE) when using standard and guided (“Q”)
MPE computation over several datasets and two reduction variants. The values were obtained
by performing 2000 MPE operations. Lower values are better since they correspond to more
accurate reconstructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3 This comparison shows how different variations of the conditioning in the sampling affect the
reward on various datasets, SPN structures, and occlusions. The mean reward is taken over
2000 random reconstructions. Lower is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.4 This comparison shows how different variations of the conditioning in the MPE procedure affect
the reward on various datasets, SPN structures, and occlusions. The mean reward is taken over
2000 random samples. Lower is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

List of Tables

4.1 This table lists all possible states and the path they correspond to. The table also shows the Q
values that were learned and the node that the two actions (choose left, choose right) can be
taken in. Note that the Q table entries for terminal states are always zero per definition and
therefore omitted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 This table provides statistics on the selected SPN structures and the numbers of path states in
it. The number of layers is the depth of the SPN from root to the deepest leaf. Param. is the
number of parameters of the entire SPN, consisting of sum node weights w and leaf distribution
parameters like n and p for Binomials. The number of paths corresponds to the number of
states in the MDPM for Q-learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 This table lists and compares the datasets that were used in the evaluation of guided sampling.
#RVs is the dimensionality of each instance, i.e. width × height × channels. #Training Ex.
and #Test Ex. are the numbers of examples in the training and test splits as described in the
relevant sources, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

List of Algorithms

2.1 This procedure finds an MPE state x in an SPN given some evidence e. It is similar to the
pseudocode of Peharz et al. [49, Fig. 7]. It was provided in a textual description as early as in
the original paper on SPNs [54, p. 5] – although with a wrong “proof” of its correctness, stating
that it would be correct even for non-selective SPNs. It is, however, only guaranteed to be correct
for selective SPNs as stated in Theorem 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 TheQ-learning algorithm for learning an approximate action-value functionQ ≈ q∗. This follows
the notation of Sutton and Barto [57, pp. 131f]. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xiv



3.1 Algorithm for sampling from SPNs while optionally using guidance when sampling from sum
nodes. The standard guide is provided which selects children of sum nodes proportional to the
weight of the edge to them, effectively implementing the typical sampling routine used in the
literature (see Section 2.5.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 The algorithm for providing a sampling guide for Algorithm 3.1 based on a learned Q table for
the MDPM for a specific SPN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xv





1 Introduction

Everybody is talking about artificial intelligence (AI). Or at least in most – if not all – industries, data science
and machine learning (ML) are a major beacon of hope for the next big leap in productivity and societal
prosperity [51] [59, Preface]. This is backed by the fact that ML methods have found their way into and
continue to be increasingly applied to many sectors, including finance, insurance, logistics, entertainment,
health care, education, and many more [10]. As of now, many applications employ some members of the
large deep neural network family to perform the desired tasks, as the examples later in this section highlight.
However, while often defining the so-called “state of the art”, and indeed achieving very impressive results
as we will see in the next paragraphs, they typically fall short when it comes to providing insights into how
results were obtained (explainable AI).

I am so clever that sometimes I don’t understand a single word of what I am saying.
— Oscar Wilde (1854–1900), The Happy Prince and Other Stories

Therefore, there is a large interest in probabilistic modeling techniques driven by the fact that many of the
models in that wide field try to address these shortcomings [17]. In particular, as their name suggests, they
model observations, internal processes, and/or outputs explicitly as probabilities [5, Chap. 8]. They might
be one of the most appropriate ways of modeling the various kinds of uncertainty that we have to deal with
when handling real-world data.

There are many tasks for which ML methods may be employed, like for example classification, regression,
clustering, and sampling – the focus topic of this thesis. Sampling is the process of extracting concrete random
instances that are probable according to some probability distribution, which is typically learned from data in
this context. It is one of the core operations on distributions and a key building block of probability theory. It,
therefore, appears both on its own as well as hidden in many theoretical and applied settings. Viewed through
the lens of machine learning, it is part of the broader family of generative methods [6] (see also Section 2.5).
They have seen a large revival in recent years, in part due to the great success of Generative Adversarial
Networks (GANs) [18, 42]. In practice, sampling procedures can be used for a lot of tasks, including:

• Completing partially observed data: Providing multiple completed instances, which are plausible and
likely given some partial evidence. This can be used to infer information that is not observed directly,
like, for example, the results of a medical test that might be invasive or very expensive to actually
perform. Such completed data can then be of immediate use in decision processes or can be used to
train downstream systems which cannot inherently handle incomplete data. In addition, it allows to
interactively explore conditional (in)dependencies between data attributes by repeated querying.
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Figure 1.1: Image inpainting results presented by Yu et al. [69, Fig. 1]. Left: Original images, Middle: White
area marks the removed parts of the images, Right: Reconstruction of the missing parts combined
with the unchanged images.

Another practical application of data completion is image reconstruction or inpainting, where the goal is
to plausibly reconstruct a rectangular or free-form masked out area. The idea was already explored for
the evaluation of the initial sum-product networks [54, Sec. 5]. Some recent and visually impressive
results are shown in Figure 1.1. By now, image inpainting is available in commercial tools too.1

• Generating new instances: Sampling can produce new synthetic data from a given data distribution
that, for example, contains personally identifiable information. The synthetic data would (ideally) still
share the same characteristics as the instances from the original dataset, but at the same time, privacy
issues might be resolved by effectively anonymizing the data despite highly personally identifiable traits.
On the other hand, it might be difficult to do this with extremely large models since they might have
the capacity to memorize some personally identifiable information [8].

The generation of such synthetic sensitive data has already been explored for health data in multiple
studies on images, electrocardiograms and other databases [2, 52, 53, 67]. In addition, there are many
applications particularly for the generation of images, with existing applications in marketing, education,
art, and others, like for example the portrait generation of StyleGAN [26], which has since matured into
a commercial service2. Some example images are shown in Figure 1.2.

• Data augmentation: One can use generative processes to provide more data for training downstream
models or to prevent overfitting [56]. So far, this has been mostly applied in various forms to image
data using variational autoencoders (VAEs) and GANs [56, pp. 20ff]. In addition, models like GANs
have also proven to be able to inter- and extrapolate to unseen data to some degree [7]. This can fill
blind spots in datasets with reasonable synthetic instances.

1For example the “Content-Aware Fill” in Adobe Photoshop® version 23.0: https://helpx.adobe.com/photoshop/using/
content-aware-fill.html.

2https://generated.photos/
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Figure 1.2: Generated images using StyleGAN, taken from [26, Fig. 10]. The images reflect the distribution of
the LSUN bedroom dataset [68], on which the model was trained on.

• Model evaluation: It can help to qualitatively determine whether a learned model is adequate by
inspecting generated samples. However, it should be noted that qualitatively assessed good sampling
does not imply suitability for other tasks, like classification, since important modes of the data distribution
might be missing [20, Sec. 20.14]. Other methods – like verifying test dataset likelihoods – should still
be applied.

1.1 Motivation

One method for probabilistic modeling are sum-product networks (SPNs), which are a density estimation
method and structure that can be estimated from data. They havemany desirable properties like enabling linear-
time probabilistic inference of arbitrary joint, marginal and conditional distributions as well as (approximate)
most probable explanation (MPE) queries, as laid out in the following chapter. While they can also be sampled
from directly, it turns out that the quality of such generated instances leaves a lot to be desired. This mainly
stems from the use of heuristic graph structures, which have to be used when scaling to larger datasets since
learned structures currently do not scale sufficiently to large data dimensions. To improve upon the current
state of the art, this thesis will investigate the following questions:

• How precisely does the standard sampling procedure in SPNs work? Does it introduce any bias or
numerical issues? What is its time complexity? (Chapter 3)

• What are its shortcomings and how can the introduction of a guide assist? What theoretical framework
can this be analysed with? (Chapter 3)

• How does guided sampling compare to standard sampling in a quantitative and qualitative evaluation?
How are they related empirically? (Chapter 4)

• What can be done in the future to improve the sample quality using SPNs even further? (Chapter 5)
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1.2 Overview

The rest of this thesis is structured as follows: We first introduce the terminology and basic concepts used
throughout this work in Chapter 2, where much focus is given to SPNs and their theoretical properties. That
chapter also presents the related work. We continue with a description and formal study of the standard
sampling method in SPNs in Chapter 3. From this, shortcomings and an improved guided sampling procedure
are derived. The chapter closes with a reinforcement learning setup to learn such a guide and a formal
connection to MPE. Next, various experiments are carried out in Chapter 4 for evaluating the sample quality
of the guided sampling procedure compared with standard sampling. We summarize and discuss the insights
gained by the previous chapters and close with an outlook on future areas of research in Chapter 5. Finally,
the Appendix provides background and further details on select topics.
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2 Background

This section will provide the basic terminology and covers the foundations of this thesis. Much focus is given
to the protagonist data structure of this work: Sum-product networks. Other topics describing methods that
are used more as tools, like reinforcement learning in Section 2.4, are described more briefly in later sections.
Finally, the related literature is reviewed in the context of generative modeling and sampling from SPNs.

2.1 Sum-Product Networks

Sum-product networks (SPNs) are a type of probabilistic circuit, a class of graphs that model probability
distributions by explicit computational semantics of the nodes for density estimation [62, 63]. They were
originally proposed by Poon and Domingos in 2012 [54] as a method for compactly representing network
polynomials. More recently, they have instead been viewed as deep structures that combine probability
distributions hierarchically, building complex distributions from simpler ones [43]. These structures as well as
their parameterization can also be learned from data, for which multiple algorithms have been proposed (see
Section 2.1.4). The following Figure 2.1 shows a simple example of an SPN.

0.5 0.80.5 0.2 0.3 0.90.7 0.1

0.7
0.1

0.2

+ +

IX=1 IX=0

+ +

IY=1 IY=0

× × ×

+

root node

Figure 2.1: A simple, valid SPN which shows sum and product nodes as well as leaves over two random
variables X and Y that can take either of the Boolean values 0 and 1. The top node is the unique
root of the SPN. Note that while this SPN has a very regular structure, this generally does not have
to be the case.
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SPNs are rooted, directed acyclic graphs (DAGs) with simple uni- or multivariate distributions over random
variables (RVs) as leaves and inner nodes consisting of an arbitrary nesting of:

• Sum Nodes (+): These model a normalized weighted sum (convex combination) over their children,
i.e. the edges to their children carry non-negative weights which sum to one for each sum node. We
require the child nodes to all range over the same RVs, which gives rise to the interpretation of sum
nodes representing a mixture of probability distributions given by the child SPNs.

• Product Nodes (×): These model a factorization of the distribution into the ones represented by their
child nodes, assuming their mutual independence. The edges to their children have no associated
weights.

Note that the only parameters in a fixed SPN structure are the weights of the edges going out of sum nodes
and potentially parameters of the leaf distributions, like for example the mean µ of a Gaussian leaf.

SPNs are interesting due to a variety of properties that allow them to compute answers to many inference
queries in time and space that is linear in the size of the DAG. They can efficiently compute joint probabilities
for total evidence, i.e. the probability of a complete observation. Moreover, they allow efficient and easy-
to-implement computation of any marginals for incomplete evidence. This in turn allows the evaluation of
arbitrary conditional probabilities in merely two passes over the data structure using Bayes Theorem. It is still
linear in the size of the graph as shown later and includes arbitrary posterior probabilities. In addition to
that, with the restriction of selectivity on the structure, they enable linear-time computation of most probable
explanations (MPEs), i.e. the most likely states of all remaining variables given some incomplete evidence.
However, marginalization over some variables in MPE queries, called maximum a-posteriori (MAP), and MPE
in non-selective SPNs remain intractable and in fact even NP-hard [43] [47, Sec. 5.3].

2.1.1 Formal Definition

In this section, we introduce the notation necessary for this thesis while assuming a basic familiarity with the
topic. For a much more foundational and extensive definition going into the measure-theoretic foundations
and probability theory, please refer to the dissertation of Peharz [47, Chap. 2 and 4], where the terminology
and notation used here were largely drawn from. In addition to that, the survey of París, Sánchez-Cauce, and
Díez [43] gives a well-written, yet brief overview.

Firstly, we need to define some basic terms and expressions:

Definition 1 (Notation for probability distributions). Let X1, . . . , Xn denote finite-valued discrete RVs with a
probability mass function (PMF) p(Xi). We then define the following terms and notation:

1. X := (X1, . . . , Xn) is a vector of RVs, where we also use set notation like X ∪ Y for convenience, being
aware that they are technically different objects. p(X) denotes the joint PMF over the RVs in X.

2. The set of all values X(ω) that a RV X takes under all events ω ∈ Ω in the sample space Ω is denoted by
val (X) := {X(ω) |ω ∈ Ω} = {x1, . . . , xk}.

3. Similarly, for a vector of RVs X = (X1, . . . , Xn) we define val (X) :=×n
i=1 val (Xi), i.e. the set of all joint

state n-tuples of X. Such a joint state is called complete evidence and denoted by x = (x1, . . . , xn) ∈
val (X).
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4. Another type of evidence is called incomplete evidence, where we have complete evidence for some RVs X
and none about other variables Y .3 In this case, any component of a state tuple belonging to Y takes the
placeholder value ∗ to denote the absence of evidence for those particular RVs.

5. Let {Xi1 , . . . , Xik} = Y ⊆ X = {X1, . . . , Xn} be a subset of the RVs of X. For a particular complete
evidence vector x = (x1, . . . , xn) we define the projection of x onto Y as x[Y ] := (xi1 , . . . , xik). For the
sake of a modest notation, for a single RVXj , let x[Xj ] := xj . The projection of components with incomplete
evidence is defined analogously, where any of xi1 , . . . , xik may be placeholders ∗.

6. Equivalent definitions shall hold for any continuous real-valued RVs X1, . . . , Xn, where p(Xi) defines the
probability density function (PDF) and P (Xi) the cumulative probability function. Note, that in this case
val (Xi) is uncountably infinite.

Definition 2 (Indicator variables). Given a discrete RV X over a finite number of states and a state x ∈ val (X),
we define an indicator variable (IV) IX=x as being 1 if X takes the value x and else 0. We also allow this notation
for joint states y of a set of RVs Y (with both X ∈ Y or X ̸∈ Y ) by defining the overloaded IX=x(y) : val (Y )→
{0, 1}:

IX=x(y) :=

{︄
1 if X ̸∈ Y ∨ y[X] = x, and
0 else

.

IX describes the vector of all such variables and functions for a given set of RVs X.

With this, we can now define basic SPNs. We will first define SPNs for discrete RVs over finite states and then
extend them to continuous RVs over R. SPNs are a rather simple structure, formally defined by:

Definition 3 (SPNs over finite, discrete distributions). A sum-product network S over a set of discrete RVs X
(with finitely many states) is a rooted DAG with a vector of weights w consisting of three types of nodes N , each
mapping y (Y ⊆X) to its value N(y) ∈ R:

• Indicator nodes:
N(y) := IX=x(y)

• Sum nodes with weights wC ≥ 0 on the edges to each child C:

N(y) :=
∑︂

C ∈ ch(N)

wC · C(y), where
∑︂

C ∈ ch(N)

wC = 1

• Product nodes:
N(y) :=

∏︂
C ∈ ch(N)

C(y)

All leaves are indicator nodes and all internal nodes are either sum or product nodes (over one or more children
each). The value S(y) of the entire graph is given by the value of its root.
3We do not consider partial evidence [47, Sec. 4.1], where there is only partial information on the set of values Z ⊆ val (X) that a
variable Z can take. For example, Z might encode that some of the real-valued RVs are not fully determined but still restricted to
be a member of some interval.
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A visual example is given in Figure 2.1 and an example for computing values will follow below. The goal of
constructing SPNs is to combine primitive distributions – like categorical ones – into deeper and more complex
ones. However, without further restriction, the values of general SPNs do not represent true probability
distributions, i.e. non-negative functions where for any RV X, it holds that∑︂

x∈ val (X)

P (x) = 1.

The following example illustrates that:

Example 2.1.1 (See also [43, Ex. 33 and 34]). Let us consider the two very simple SPNs in Figures 2.2 and 2.3
over two independent binary RVs Y and Z, combined in the set S = {Y, Z}. Note that val (Y ) = val (Z) = {0, 1}.

A) Let the first SPN be given by:

SA(s) :=SA ((y, z))

= 0.4 · IY=0(y) + 0.6 · IZ=0(z)

If we wanted to compute the probability of marginalizing out both Y and
Z using SA, we could compute (marginalizing out Z immediately):

P (Y = 0)
!
= SA((0, ∗)) = 0.4 · 1 + 0.6 · 1 = 1,

P (Y = 1)
!
= SA((1, ∗)) = 0.4 · 0 + 0.6 · 1 = 0.6.

Adding both should yield 1 due to the axioms of probabilities, but instead
P (Y = 0) + P (Y = 1)

!
= 1.6 > 1. So clearly, what we have computed are

not real probabilities!

0.4 0.6

+

IY=0 IZ=0

Figure 2.2: Visualization
of the SPN SA

B) Now, let the second SPN be given by:

SB(s) := IY=0(y) · IY=1(y)

Like above, we compute

P (Y = 0)
!
= SB((0, ∗)) = 1 · 0 = 0,

P (Y = 1)
!
= SB((1, ∗)) = 0 · 1 = 0,

and arrive at a sum unequal to 1: P (Y = 0) + P (Y = 1)
!
= 0 < 1. Again,

the values of SB are no probabilities.

×

IY=0 IY=1

Figure 2.3: Visualization
of the SPN SB

For the characterization of well-behaved SPNs, we require the notion of scopes, which is intuitively just the
RVs that a given SPN ranges over. Formally, we define:
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Definition 4 (Scopes). The scope sc(S) of an SPN S over RVs X is given by the scope of its root, which is defined
recursively on the vertices V of the DAG, where

sc : V → 2X

sc(N) : =

⎧⎪⎨⎪⎩
⋃︂

C ∈ ch(N)

sc(C) if N is an inner node (either sum or product node), and else

{X} if N is a leaf node over the RV X.

Example 2.1.2. Consider SA from Example 2.1.1.A (see Figure 2.2). The left child has scope sc(IY=0) = {Y }
and the right one sc(IZ=0) = {Z}. Consequently, for the root node N : sc(N) = {X,Y } = S = sc

(︁
SA
)︁
.

Definition 5 (Sub-SPNs, also called sub-networks). For a given SPN S with weights w and one of its nodes N ,
we call the sub-DAG rooted at N a sub-SPN and denote that SPN as SN .

It is easy to see by induction over the structure that we can narrow down the set of RVs when traversing an
SPN from the top:

Proposition 6. Let S be an SPN and N any of its nodes. For any x, it holds that N(x) = N(x[sc(N)]).

2.1.2 Validity

Arbitrary SPNs do not compute probabilities, as we have seen in Example 2.1.1 – they are not valid:

Definition 7 (Validity). An SPN S is valid iff for any (incomplete) evidence x, S(x) = PS(x), i.e. its value is a
joint or marginal probability.

As described in the introduction in Section 2.1, SPNs compose simple leaf distributions into deeper structures,
where sums act as mixtures and products as factorizations. We can establish sufficient conditions for the
validity of SPNs by dissecting these intuitions [54]. Firstly, as mixtures describe a distribution by a composition
of other distributions over the same variables, we should ensure that each child of a sum node has the same
scope (→ “completeness”). Secondly, a proper factorization of a distribution into a product of non-conditional
children should be composed of a product of non-overlapping distributions, i.e. the scope of the children should
be disjoint (→ “decomposability”). There is in fact a weaker and also sufficient notion called “consistency”,
which is, however, of little practical relevance [43, p. 5].

Definition 8 (Completeness). An SPN S is complete iff in each sum node N , all children Ci, Cj ∈ ch(N) have
identical scope: sc(Ci) = sc(Cj).

Definition 9 (Decomposability). An SPN S is decomposable iff in each product node N , all children Ci, Cj ∈
ch(N) have (pairwise) disjoint scope: sc(Ci) ∩ sc(Cj) = ∅.
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decomposable→ consistent

complete ∧ decomposable
↓

complete ∧ consistent → valid
↕

each sub-SPN is valid

Figure 2.4: Logical connection of the central
properties of SPNs related to validity.

Due to the definition of scopes (Definition 4), com-
pleteness is equivalent to all children C of a sum
node N having the same scope as the N , i.e.
sc(C) = sc(N). Similarly, decomposability is equal
to the fact that for each product node P , the scopes
of the children partition the scope of the product
node:

sc(N) =
⨄︂

C ∈ ch(N)

sc(C).

Definition 10 (Consistency). An SPN S is consis-
tent iff in each inner product node N , no variable X
appears with an indicator for value x1 in one child
C1 and for a different value x2 ̸= x1 in a different
child C2 ̸= C1.

It is quite obvious that decomposability implies consistency since no variable X occurs in more than one child
at all:

Proposition 11. An SPN S that is decomposable is also consistent.

We can finally characterize valid SPNs by purely structural properties:

Theorem 12 ([54, Thm. 1]). An SPN S that is complete and consistent is valid.

Theorem 13 ([54, p. 3]). An SPN S is complete and consistent iff each sub-SPN SN for any inner node N is
valid.

The relation of the different properties is illustrated in Figure 2.4 and an example is given below. Please also
note that invalid SPNs have applications in so-called discriminative SPNs too [9, 15], but are out of the scope
of this work.

Example 2.1.3. Consider again the SPNs from Example 2.1.1 (see Figures 2.2 and 2.3). We assessed that both
are not valid due to the counterexamples that we found. We can see that SA is not complete and SB is not
decomposable (or even just consistent).

In contrast, the SPN given in Figure 2.1 is valid since it is complete and decomposable.

Example 2.1.4. Note that in reverse, validity does not imply completeness, consistency, or even just decompos-
ability. This can be seen by the SPN that encodes the following joint probability over two RVs of Boolean domain
[54, p. 3]: 1

2IX=0IY=0IY=1+
1
2IX=0. The probability table of all joint and marginal states proofs that this indeed

computes true probabilities.

Since valid SPNs compute probabilities as their values, it makes sense to extend some typical notation of
distributions to SPNs:

Definition 14 (Conditional values). Let S be a valid SPN. Let x and y be values of disjoint sets of RVs from the
scope of S. Then conditional values are defined as S (x |y) := S (x,y) /S (y).
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2.1.3 Generalization to Arbitrary Leaf Distributions

Up until now, we have restricted the basic building blocks of our deep hierarchy of probability distributions
to finite-valued discrete distributions. It is straightforward to extend the definition of leaf nodes in SPNs
to not only consist of indicator variables for single discrete RVs (compare Definition 3), but instead allow
distributions over arbitrary RVs, i.e. both discrete and continuous ones [54, p. 4]. This includes the previous
definition of leaf nodes as a special case. It is even possible to extend it further to multivariate distributions
[47, Sec. 4.4], which again includes the univariate ones. Essentially, instead of just PMFs we now also allow
PDFs in leaves, and the values of SPN nodes are now likelihoods. The previous definitions and theorems hold
equivalently for the following wider definition of SPNs:

Definition 15 (Generalized Sum-Product Network). A sum-product network S over a set of finite-valued discrete
or any continuous, uni- or multivariate RVs X is a rooted DAG with a vector of weights w consisting of three
types of nodes N , each mapping y (Y ⊆X) to its value N(y) ∈ R:

• Leaf or distribution nodes L with an arbitrary distribution over RVs ∅ ̸= X ′ ⊆X given by a PMF or PDF
p(x′):

L(y) :=

{︄
1 if Y ∩X ′ = ∅
p(y[X ′]) else

.

• Sum nodes as in Definition 3.

• Product nodes as in Definition 3.

All leaves are distribution nodes and all internal nodes are either sums or products. The value S(y) of the entire
graph is given by the value of its root.

Definition 16 (Generalized Scopes). The scope sc(S) of a (generalized) SPN S over RVs X and its nodes V is
defined analogously to Definition 4, except for leaf nodes L over RVs X′, where we define sc(L) := X′.

In the following, we will always assume to be working with this more general definition when we talk of SPNs,
scopes, and their properties.

2.1.4 Learning: Structure and Parameters

Learning in the context of SPNs consists of two problems that can be solved both independently and jointly [43,
62]: Structure learning aims to find a tree or DAG structure that can adequately model the density of a given
dataset, given proper parameters that are yet to be assigned. Given an SPN as a plain graph, parameter
learning then finds suitable assignments to the sum node weights w and possibly leaf distribution parameters.
This section will not go into the details of parameter learning, as there exist multiple working implementations
of it that one can rely on. For example, the libraries used in the experiments described in Chapter 4 implement
an online expectation-maximization (EM) algorithm [38, 48]. In the context of sampling, the comparison of
different structures is much more fruitful. Note that it is not always necessary to learn the structure from data
since one can also hand-craft them and then only perform parameter learning, as was done with the first two
structure types below.
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Figure 2.5: Illustration of the LearnSPN procedure which jointly learns structure and parameters of an SPN
given some training data. The training set is split recursively and each time either a sum node
over data clusters of the same RVs or a product that partitions the set of RVs is grown. Taken
from the original publication [16, Fig. 1].

Poon-Domingos Structure One of the first proposed structures for SPNs was the one proposed by Poon
and Domingos in their first publication [54], where they built a deep hierarchy of features exploiting local
structure in images that is reminiscent of convolutional neural networks. To this end, the array-specific
structure consists of products over axis-aligned splits and sums over several such splits at multiple levels.
In the case of images, the pixel grid is alternatingly split vertically and horizontally in a recursive fashion
until a threshold size of the resulting regions is reached. This structure is now called Poon-Domingos (PD)
although first named GenerateDenseSPN() [54, Sec. 5], but the verbal description is arguably too vague
to allow for a reliable reproduction of the structure. However, a differently named implementation in the
Java language is hidden in the accompanying material.4 Many other libraries like SPFLow [38] or spyn5 do
not seem to implement it. Nevertheless, an efficient Python implementation luckily is available from the
Einsum Networks publication, where the graph is represented in a special vectorized form to archive higher
performance using GPU acceleration [48]. The latter will be used in this thesis after a translation to an explicit
graphical representation similar to SPFLow (see Section 4.2.3).

Binary Tree Structure This method works on any data domain and not only on arrays by constructing a
sum over many balanced trees where each branch covers one half of the scope of the parent. Each branch is
then split recursively until a predefined depth is reached. As with the PD structure above, the method does
not consider the training data and is therefore a purely heuristic structure. Again, the implementation from
Einsum Networks [48] will be used for the experiments.

LearnSPN For the sake of simplicity, the popular LearnSPN procedure6 [16, 61] was chosen as the only
structure learner that considers the actual training data. There are a multitude of alternative and more
4See the file code/src/spn/SPN.java on lines 217ff in the method spn.SPN::init().
5https://github.com/arranger1044/spyn
6Not to be confused with the identically named procedure for parameter learning in the original SPN publication [54, Alg. 1].
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sophisticated algorithmswhich are not considered in this work [43, Sec. VI], as will be discussed in Section 4.2.2.
The procedure is a framework that allows for different concrete implementations. It hierarchically and
alternatingly performs independence tests between sets of RVs to produce product nodes and instance
clustering to perform sum nodes. In each step, either the scope of the Sub-SPN or the relevant amount of
data gets split up. Eventually, this yields a tree-shaped SPN where the leaves can be uni- or multivariate
distributions depending on the cutoff criteria. The original scheme for univariate distributions is shown
visually in Figure 2.5.

2.1.5 Maximum A-Posteriori and Most Probable Explanation

Let S be an SPN and E ⊆ sc (S) a subset of the RVs about which we have complete evidence e. We have no
evidence on the remaining variables sc (S) \E. We can now ask what a likely configuration of the missing
variables according to the distribution PS is, and obtain some concrete ones by conditional sampling as we
will explore later in Section 2.1.6. Instead, we can also ask for only the most probable values of some or all
missing variables. To this end, we can follow the naming and notation of the survey by París, Sánchez-Cauce,
and Díez [43] and define two disjoint sets of RVs X and H such that X ∪H = sc (S) \ E. We can then
define the so-called maximum a-posteriori state as

MAP(e,X) := argmax
x∈ val (X)

P S (x | e) .

Note, that we marginalize over all hidden variables in H. In case we are interested in all RVs, that is H = ∅,
we define the special case of the most probable explanation as

MPE(e) := MAP(e, sc (S) \E).

In this case, we are interested in the state x× e which has the highest likelihood among all such states for a
fixed e. In case there are multiple such states, any of them will suffice.

In general, MAP is inherently harder than MPE, and computing any of them is NP-hard in SPNs [49, Sec. 4].
It should be noted that there are several approximations [43, Sec. IV] which are, however, out of the scope of
this thesis. There are certain conditions on the structure of SPNs under which MPE computation is tractable
and even linear in the size of the SPN. This is the case if at each sum node N and for each complete evidence
for sc(N), only one child may propagate a positive probability (and all others are zero). Formally, we define:

Definition 17 (Selectivity). A sum node N is said to be selective iff for all e ∈ val (sc(N)), at most one child
C ∈ ch(N) has C(e) > 0. An SPN is selective iff all its sum nodes are.

Given this restriction, there is a simple to implement and very efficient algorithm for computing the MPE but
not MAP for given incomplete evidence. The necessary computation steps are given in Algorithm 2.1 and
it is relevant since it is very similar to the conditional sampling procedures derived later. It performs two
passes over the data structure. The first one is an upward pass from the leaves to the root as in any normal
inference query, but in this case on each sum node, we propagate the maximum and not the sum over all
weighted children’s probabilities and remember the (or a) child index imax where the maximum was reached.
We call it UpwardPassMPN(e) for evidence e, where MPN stands for max-product network. The second pass is
a recursive downward pass originating from the root for assembling the actual MPE. In a product, we recurse
into all children since they have scope over disjoint RVs, and in sum nodes, we select the child with the largest
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1 Algorithm: MPESelective
Input :An SPN S

Evidence e with E ⊆ sc(S)
Result :State x of the remaining RVs X = sc(S) \E

2 S ′ ← UpwardPassMPN(e) // Obtain annotated SPN

3 Q← new queue of nodes
4 Put (Q, root of S ′) // Prepare downward pass

5 x← 0 // Initialize the result vector

6 while Q is not empty do
7 N ← Pop (Q)
8 switch TypeOf(N) do
9 case leaf do

10 Y ← sc(N)
11 x[Y ]← argmax

y ∈ val (Y ), y compatible with e

PN (y | e) // Compute MPE in leaf distribution

12 case product do
13 foreach C ∈ ch(N) do
14 Put (Q, C)

15 case sum do
16 Cmax ← argmax

Ci ∈ ch(N)

wiCi(e) // Obtained from annotated SPN S ′

17 Put (Q, Cmax)

18 return x

Algorithm 2.1: This procedure finds an MPE state x in an SPN given some evidence e. It is similar
to the pseudocode of Peharz et al. [49, Fig. 7]. It was provided in a textual description as early as
in the original paper on SPNs [54, p. 5] – although with a wrong “proof” of its correctness, stating
that it would be correct even for non-selective SPNs. It is, however, only guaranteed to be correct for
selective SPNs as stated in Theorem 18.
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probability (which we have remembered) and only recurse into that one. Once we arrive at a leaf, we only
need to compute an MPE state for the single leaf distribution, like the mean µ for a multivariate Gaussian.

It was shown that this algorithm is indeed correct, and it is easy to see that it is efficient, since each node is
visited at most once in the upward and once in the downward pass:

Theorem 18 (Correctness of MPESelective [49, Sec. 4]). Let S be a selective SPN and e ∈ val (sc(S))
(incomplete) evidence. Then Algorithm 2.1 returns the correct MPE state: MPESelective(S, e) = MPE(e).

Theorem 19 (Worst-case complexity of MPESelective). Let the worst-case complexity of estimating any leaf
MPE state be O(l). Then Algorithm 2.1 runs in O(s · l), where s is the size of S (i.e. the number of edges).

In the case of the typically used basic leaf distributions like Poisson, Gaussian, Categorical, Multinomial, etc.,
MPE states can be found easily in constant time. Thus, finding MPE states in an SPN using these as leaves
can be done in linear time in the size of the graph in the worst case. Also, tighter bounds might be possible
to prove, since only a sub-tree of the SPN and not of the general DAG is actually visited. This is also called
the induced tree, since the entire probability mass for that query instance e lies on the tree [43, Sec. III-F,
Prop. 21].

In a general non-selective SPN, this algorithm is still efficient. However, it can lead to severe deviations from
the true MPE [43, p. 8] [49, Sec. 4]. It is possible to efficiently turn any SPN S into an augmented SPN S ′ that
is selective, but unfortunately an MPE in S ′ is not necessarily an MPE in S or even guaranteed to be close to it.
In practice however, it is commonly used as an approximation [55] and also called Best Tree algorithm in that
context [36]. Other approaches include designing even invalid structures and one-hot queries in a way that
ensures correct MPE computation as done by Cheng et al. [9], although they do not provide proof that their
approach computes true MPEs.

2.1.6 Sampling

SPNs allow for values to be sampled from the probability distribution they represent. The procedure is very
similar to the MPE computation in Algorithm 2.1 but does not require selectivity for correctness. When
sampling, one also traverses the graph and chooses a single child in sum nodes and visits each child in product
nodes. However, the choice in sum nodes is not done deterministically like for MPE, and instead, a child is
sampled with probability proportional to its weight and the evidence marginal likelihood in that child. The
procedure is stated as pseudocode and thoroughly analyzed in Section 3.1.

2.2 Evaluation of Generative Models

The following measures determine through different means how likely a given instance or set thereof is to
belong to some training or test dataset. More similar instances should produce lower scores while instances
not akin to the reference data should produce high scores. These functions are important to (1) evaluate the
performance and improvement of the methods being developed and (2) in order to serve as a reward signal in
reinforcement learning settings (see Section 2.4). Most of them are not metrics in strict mathematical terms
but intuitively measure distances between the data distribution pd implicitly given by N i.i.d. sampled data
points D = {d1, . . . ,dN} and a given instance x.
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The distance of multiple data points to the dataset is typically determined by averaging the individual distances
of the instances. This is, for example, used in minibatch stochastic gradient descent (SGD), an optimization
routine often employed in learning neural networks (NNs).

2.2.1 Nearest Neighbor Distance and Reconstruction Errors

One can assume that, on average, instances in D are “close” to the distribution represented by D, since by
definition, they were sampled from it. In turn, if an instance d′ is largely similar to some d ∈D, it is likely to
be sampled from pd too. However, since simple Nearest Neighbor searches like k-d trees are computationally
expensive in high-dimensional spaces like images, determining a meaningful distance of an arbitrary instance
d′ to the nearest or k nearest neighbors is difficult or even intractable [4, 14]. When we switch the perspective
a little bit, we can see that we can compute the distance easily with any vector metric once we know the
nearest neighbor. And in fact, we can construct data in such a way that we know a probable nearest neighbor
by taking an arbitrary point from the dataset d ∈D, removing some parts of it to obtain dpartial, and looking
at the complete reconstructed d′. We can assume that the nearest neighbor of d′ is probably just d, and the
“distance” of d′ to pd is then approximately ∥d− d′∥.

In the case of image domains, obtaining dpartial amounts to simple partial occlusion, for example by removing
half of the pixels from one side of the image. In addition, it is desirable to punish large deviations in any
individual dimension more than little ones in many dimensions, as we expect some noise in the observations
anyways. So when using popular Minkowski metrics, it is better to choose Euclidean (L2) over Manhattan
(L1) distances for these reconstruction errors. In addition, it is common to square the distance and obtain a
measure that is proportional to the Euclidean distance, called Mean Squared Error (MSE). For K-dimensional
vectors d,d′ ∈ RK it is defined as:

MSE(d′,d) :=
1

K

K∑︂
k=1

(︁
dk − d′k

)︁2
∝

K∑︂
k=1

(︁
dk − d′k

)︁2
=

⎛⎝ 2

⌜⃓⃓⎷ K∑︂
k=1

(︁
dk − d′k

)︁2⎞⎠2

=
⃦⃦
d− d′⃦⃦2

2
.

Note that the mean in MSE is usually the mean over multiple samples, and not like here a normalization over
the number of dimensions. This rescaling is, however, useful when directly comparing errors on different
datasets as they are all scaled to similar orders of magnitude.

2.2.2 Other Metrics

Often, other metrics are used in the evaluation of generative models, namely the Fréchet inception distance
(FID), kernel inception distance (KID) andmaximum mean discrepancy (MMD) [6, Sec. 7]. However, all of these
are only defined and meaningful on more than a single data instance, making them less ideal for a reward
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function. In addition, the inception distances have unclear reliability on datasets like MNIST as the neural
network that is used for the feature transformation was trained on very different images and transformation
into that specific image space is not trivial too [44]. The task of evaluating generative models is difficult [20,
Sec. 20.14], and using reconstruction errors as a basis avoids many problems.

2.3 Exponential Family Probability Distributions

The exponential families (EFs) are a type of distribution that generalize many common ones like Gaussian,
Binomial, Poisson, Geometric, Gamma, and others [29, pp. 261ff]. They are attractive to machine learning
applications like SPN leaf distributions since a single framework and learning procedure can encompass a wide
range of distributions that are typically of interest. Following the notation of the Einsum Networks paper [48],
an exponential family is defined as:

Definition 20 (Exponential family [29, Def. 8.1]). Let X be a set of RVs. An exponential family p over X is
defined by

• a sufficient statistics function T : x→ RN ,

• natural parameters θ ∈ RN ,

• a matching log-normalizer/log-partition function A : θ → R, and

• a base measure h : x→ R.

The distribution is given by

p(x) =
h(x)

exp (A(θ))
exp

(︁
T (x)Tθ

)︁
, or equivalently in log-space by

log p(x) = logh(x) + T (x)Tθ −A(θ).

It is often useful to have a conversion between the typical parameters of a distribution, like for example µ
and σ2 of a univariate Gaussian N

(︁
µ, σ2

)︁
, and the natural parameters of the EF denoted as θ. This is also

required when converting between implementations using different representations of the same distribution.
For the purposes of this thesis, only univariate Gaussian and Binomial distributions are considered. Further
information can be found in the book Probabilistic Graphical Models: Principles and Techniques of Koller and
Friedman (2009) [29, Sec. 8] and the “digest with flash cards” of Nielsen and Garcia (2011) [41].

Univariate Gaussian Distributions

The PDF of univariate Gaussians N
(︁
µ, σ2

)︁
, which were used in the experiments in this thesis, is given by

p(x) =
1

σ
√
2π

exp
(︃
−(x− µ)2

2σ2

)︃
.
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We can therefore formulate N
(︁
µ, σ2

)︁
as an exponential family with parameters θ(µ, σ2) using the following

translation [29, Ex. 8.3] [41, pp. 3f and 15]:

T (x)T =
(︁
x x2

)︁
θ(µ, σ2) =

(︃ µ
σ2

− 1
2σ2

)︃
(2.1)

A(θ(µ, σ2)) =
µ2

2σ2

h(x) =
1

σ
√
2π

In the leaves of Einsum Networks, the parameters of such an EF are learned. Although they are stored
in their so-called “expectation form” φ [48, Sec. 3.5], a conversion to θ is implemented alongside. Given
θT =

(︁
θ1 θ2

)︁
, one can then recover the parameters of the Gaussian distribution for use in SPFlow using

equation (2.1) by:

σ2 = − 1

2θ2
and µ = θ1σ

2.

Note, that this also includes isotropic multivariate Gaussians, since in that case all RVs can be converted
individually in the same way as done for the case with univariate Gaussians.

Binomial Distributions

Similarly as for Gaussians, the PMF of the Binomial distribution

p(x) =

(︃
n

x

)︃
px(1− p)n−x, x ∈ {0, . . . , n}

can also be written as an EF. For the sake of brevity, only the two conversions between the natural parameters
θ ∈ R1 and the success probability p are provided here [41, p. 22, called Θ and Λ]:

θ(p) = log
(︃

p

1− p

)︃
, and

p(θ) =
exp(θ)

1 + exp(θ)
.

2.4 Reinforcement Learning

Reinforcement learning (RL) is one of the broad main groups of methods in machine learning, alongside the
well-known supervised (including classification and regression) and unsupervised (including clustering and
density estimation) settings [57, Sec. 1.1]. Note, that this taxonomy does not attempt to be complete, as there
are more approaches and hybrids, like for example self-supervised learning. In RL, the abstract setting is for
an agent to learn good actions in a given environment. In contrast to supervised learning, however, the agent
is not explicitly told which actions are good or bad. Instead, a reward is provided from which the agent has to
deduce from exploration of different possible actions which of them produce high rewards. The problem is
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Figure 2.6: In episodic reinforcement learning, the agent repeatedly chooses actions and receives a new
observation of the environment along with a reward, from which it has to learn how to act best.
Note that at the dashed line the notion of t+ 1 changes to t as the next iteration begins.7

commonly depicted as in Figure 2.6. Typically, the environment is modeled in episodes, where stating from an
initial state, multiple actions are to be chosen until a terminal state is reached in a finite number of steps. This
setting is called episodic (as opposed to continuing) and is the only one that we will require in this thesis. A
reward may be provided at each step as shown in the figure or only at the end. We will also constrain ourselves
to the class of model-free algorithms, that do not attempt to learn the environment dynamics. Instead, they
directly focus on learning which actions yield which rewards.

This section is based on Reinforcement learning: An introduction from Sutton and Barto (2018) [57], where
more in-depth information can be found.

Formally, we introduce the notion of Markov Decision Processes (MDPs), which serve as a possibly idealized
framework of the aforementioned RL setting:

Definition 21 (MDP). An MDPM is defined by a tuple (S, Sinit, {As}s∈S ,R, p), where:

• S is the set of possible states s.

• Sinit is a distribution over initial states s0 ∈ S that we can sample from: s0 ∼ Sinit.

• {As}s∈S is a family of possible actions As that are allowed in some particular state s ∈ S. If the set of
actions is the same for all states, we simply use A := As for any state s.

• R ⊆ R is the set of possible rewards. It is often omitted if R = R.

• p : S ×R× S × A→ [0, 1] is the dynamics function, defined as the probability of a certain next state s′
and reward r being reached when choosing action a ∈ As in state s at a certain time step t ∈ {0, 1, 2, . . . }:

p
(︁
s′, r

⃓⃓
s, a
)︁
:= P

(︁
St+1 = s′, Rt+1 = r

⃓⃓
St = s,At = a

)︁
.

The central Markov property that is encoded in the dynamics function states that the distribution over the next
state s′ and reward r is fully determined by the current state s and action a. In particular, it cannot depend
on past states and must be fully observable. Even if those assumptions are not always met in practice, they
often form a useful approximate model.
7Figure adapted from https://tex.stackexchange.com/a/461318/140355, accessed 19 April 2022. It originally stems
from Sutton and Barto [57, Fig. 3.1 on p. 54].
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The objective in RL is to find a good policy π (a | s), which is a distribution over actions a that should be taken
in state s. Due to different reasons, one typically also defines a discount factor γ ∈ [0, 1], which weights any
future rewards less or equal than the the immediate reward (cf. [57, pp. 54f]). Its effect becomes apparent
once we properly define the optimization goal, which is to find a policy π that maximizes the expected
discounted future return when following it for entire episodes starting in the state st:

Gt := rt+1 + γ (rt+2 + γ (rt+3 + . . . ))

= rt+1 + γrt+2 + γ2rt+3 + . . .

=
∞∑︂
k=0

γkrt+1+k.

Based on the definitions above, we can derive some helpful quantities and define what a best policy would
have to fulfill:

Definition 22 (Auxiliary definitions and Optimality). Let an MDPM be defined as in Definition 21 and γ ∈ [0, 1]
be the discount factor. Let π be any policy. E π[ · ] denotes the expected value, where probabilities of actions are as
defined by π and probabilities of states and rewards as inM. Then:

• The value of a state s (when continuing according to π) is defined by the value function

vπ(s) := E π [Gt | st = s] .

• The action-value function is defined as

qπ(s, a) := E π [Gt | st = s, at = a] .

• An optimal policy is defined as

π∗ := argmax
policy π

E
s∼Sinit

[vπ(s)] = argmax
policy π

E π

s∼Sinit
[G0 | s0 = s] .

• The value and action-value function of any optimal policy π∗ is denoted by v∗ and q∗, respectively.

In fact, it can be shown that even if different optimal policies π1
∗, π

2
∗, . . . exist, they all share the same value

and action-value functions [57, pp. 62f], that is

vπ1
∗
= vπ2

∗
= · · · = v∗, and

qπ1
∗
= qπ2

∗
= · · · = q∗.

This justifies the notation suggesting unique functions and shows that it is rather a property of the processM
than that of an (optimal) policy. This idea is built upon in the following section.

20



1 Algorithm: Q-learning
Input :An MDP with discount factor γ ∈ [0, 1]
Hyperparameters :A small greedy-factor ε ∈ (0, 1] (or a suitable schedule)

A step size α ∈ (0, 1] (or a suitable schedule)
The number of episodes N to learn from

Result :The approximated action-value function Q(s, a)

2 Initialize Q(s, a) as a table filled with zeros

3 repeat N times
4 Sample s ↝Sinit
5 while s is not terminal do

// Choose action a from Q in ε-greedy fashion
6 Sample x ↝B (x | ε) // Bernoulli distribution with p = ε

7 if x == 0 then
8 a← argmax

a∈As

Q(s, a)

9 else
10 Sample a ↝U (a |As) // Uniform distribution over As

11 Observe s′, r ↝p (·, · | s, a) // Take action a in state s

12 Q(s, a)← Q(s, a) + α

[︃
r + γmax

a∈As

Q(s′, a)−Q(s, a)

]︃
// Perform Q update

13 s← s′

14 return table Q

Algorithm 2.2: The Q-learning algorithm for learning an approximate action-value function Q ≈ q∗.
This follows the notation of Sutton and Barto [57, pp. 131f].

2.4.1 Q-Learning

Q-learning is a popular method in RL due to its effectiveness despite its simplicity. It was also chosen since it
had proven to be effective in computationally similar settings, where also a tree of choices was traversed [3,
39]. It is an off-policy algorithm, meaning that it learns a policy from observations of another policy. The
motivation is rather straightforward: Suppose the MDP is in state s ∈ S and there are only a finite number of
possible actions As. If we knew the optimal state-action function q∗, we could simply compute the optimal
next action by a = maxa∈As q∗(s, a). Such a function is also particularly simple to represent if the number
of states is finite and small too since in that case, q∗ is just a lookup table with |S| rows and maxs∈S |As|
columns. Otherwise, a function approximator like a neural network can be used to represent and learn the
state-action function [37]. Algorithm 2.2 shows the algorithm which iteratively approximates q∗ by a tabular
Q. It was shown back in 1992 that this algorithm indeed converges to the true optimal state-action function
q∗:

Theorem 23 (Convergence of Q-learning [65]). LetM be an MDP with discount factor γ ∈ (0, 1) and bounded
rewards, i.e. ∃Rmax ∈ R : ∀r ∈ R : |r| ≤ Rmax. Let ε ∈ (0, 1]. Further assume that the learning rate αn ∈ [0, 1)
changes with the index of the current episode n in a way that the infinite series

∑︁∞
n=0 αn diverges to infinity and
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∑︁∞
n=0 α

2
n converges. Let Qn denote the result of running Q-learning with these ε and α for n episodes. Then

P
(︂

lim
n→∞

Qn = q∗

)︂
= 1.

In practice, however, the learning rate schedule for α is usually kept constant as in Algorithm 2.2 or is decayed
over a finite amount of steps for simplicity.

2.4.2 Double Q-Learning

There are numerous extensions to Q-learning, of which many fall in the realm of “deep” Q-learning, where the
Q table is approximated by a neural network [25]. A very simple extension is Double Q-learning, where two
tables are learned and training is interlocked to avoid overestimation biases sometimes observed in normal
Q-learning, especially with high discount factors γ [24] [57, Sec. 6.7]. To this end, Algorithm 2.2 is changed
as follows:

• In the beginning (line 2), two tables Q1 and Q2 are initialized.

• If greedily following the current Q table (line 8), the argmax is computed over Q1(s, a) + Q2(s, a)
instead of just Q(s, a).

• The update in line 12 is replaced. With probability 0.5 the following update is performed, and with
equal probability the same one where both tables Q1 and Q2 are swapped in every occurrence:

Q1(s, a)← Q1(s, a) + α

[︄
r + γQ2

(︄
s′, argmax

a′∈As′

Q1(s
′, a′)

)︄
−Q1(s, a)

]︄

This algorithm empirically works better in some environments. It also provably converges to q∗ as the number
of training episodes grows under conditions similar to Theorem 23 [24, Thm. 1].

2.5 Related Work

This section provides an overview of work that relates to this thesis by pursuing similar goals. It is threefold:
Firstly, alternatives to SPNs as deep probabilistic models are presented. Afterward, other means of generating
samples are presented and discussed in relation to the goals of this thesis. Finally, prior work on sampling
procedures in SPNs is reviewed.

2.5.1 Probabilistic Graphical Models

SPNs are structurally closely related to arithmetic circuits (ACs) [12], which also describe a computational
graph. But instead of carrying probabilistic interpretations like SPNs do (see Section 2.1), they only compactly
model how to compute a polynomial of the leaf values. This stems from the fact that they were initially geared
towards allowing for fast approximate inference in Bayesian networks that they were compiled from [34] [43,
App. A]. SPNs, however, model a distribution by composing simpler ones into a deep hierarchy while also not
requiring the graph to be deterministic/selective, like ACs do. SPNs are therefore strictly more expressive
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than ACs [54, Sec. 3] [43, App. A], which comes with certain limitations too. Here, the central one is the lack
of tractable exact MPE as discussed in Section 2.1.5, which is closely related to the task of sampling discussed
in Section 2.1.6. Lifting the difficulty of that task is one of the main goals of this thesis, in effect allowing the
combination of the comparatively strong expressiveness of SPNs [43, 50] with tractable good approximations
to formally intractable operations. Expressiveness and traceability of certain queries of these probabilistic
graphical models can be seen as two often opposing targets of a spectrum, and exploring this space is an
active area of research [62, 63].

Another perspective is the comparison to artificial neural networks: This actively explored and exploited class of
models is the main workhorse of current deep learning and machine learning in general [20, Chap. 1]. In their
simplest form, feed-forward NNs (also called multilayer perceptrons) describe a computational graph, much
like SPNs do. However, they (usually) do not carry any probabilistic semantics, and can therefore incorporate
much richer structure and computation nodes. Instead of mere convex sums and products with additional
strong limitations on the scope of incoming edges, NN nodes usually compute a non-linear transformation f
like traditionally the hyperbolic tangent of an arbitrarily weighted sum with bias b, e.g. f

(︁
wTx+ b

)︁
. Structure

learning is not typically done (except for neural architecture search), and instead, gradient-based optimization
of the parameters is done. Their outstanding expressiveness stems from their deep and in general often
massive structure, which are made practical in both learning and inference by very fast implementations like
Pytorch [45] being widely available. This idea has since also been applied to SPNs in the form of random
sum-product networks (RAT-SPNs) [50] and Einsum networks [48].

2.5.2 Deep Generative Modeling

There is a multitude of deep generative modeling techniques, of which many achieve impressive results as
was shown in Chapter 1. This section shall briefly provide an overview of two of the basic major methods,
namely Variational Autoencoders and Generative Adversarial Networks. There are more methods and in
particular hybrids and refinements in the literature, like normalizing flows [28], energy-based models, and
auto-regressive models, for which the reader is referred to the excellent survey of Bond-Taylor et al. [6] and
to Deep Learning by Goodfellow, Bengio, and Courville (2016) [20, Chap. 20].

The first and perhaps one of the more widely-known approaches are Variational Autoencoders (VAEs), which
are composed of an encoder-decoder architecture like normal autoencoders [27]. The encoder compresses a
data instance into a latent lower-dimensional encoding, and the decoder projects such an embedding back
to the reconstructed data space. Typically, the encoder and decoder are realized as NNs, but due to their
deterministic nature, they are not suitable for generative sampling. VAEs improve on this by introducing
special semantics to the encoding: The latent representation is modeled to parameterize a distribution, like
an isotropic multivariate Normal distribution or more elaborate techniques [6]. Samples can be generated by
sampling from a prior of the latent distribution and decoding it. Often, the output of the decoder is again
taken to be a parameterization of a distribution. The samples generated by VAEs are often a little blurry and
typically inferior to those generated by other methods like GANs [6], but are conceptually simple and much
more stable in training.

Generative Adversarial Networks (GANs), originally presented in 2014 [22], are a game-theoretic and non-
probabilistic take at sampling where two functions in the form of NNs are learned [21]: Firstly, a generator G
that projects a random latent vector z sampled from a simple distribution to a sample that should mimic the
one of the dataset. Secondly, a discriminator D that learns to differentiate between data from the true training
data distribution or the output of G. They are adversaries, in the sense that G tries to fool D into thinking
that fake images are real, to which end G has to learn to produce convincing examples. In the sought-after
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equilibrium, the discriminator would have to randomly guess whether it is fake with probability 1/2. At that
point, only the generator is retained. GANs produce very convincing samples and have since been extended in
various ways [6, 11]. However, they lack the probabilistic semantics of probabilistic graphical models and
there is no straightforward way of recovering that [59].

Finally, it should be noted that samples from SPNs are certainly not expected to be on par with those of VAEs,
GANs, or other similar deep generative modeling methods – even if that would of course be a very exciting
development. The latter specialize in generative modeling and can only do that (albeit very successfully),
while SPNs additionally explicitly model an entire distribution and allow for real probabilistic inference,
tractable marginalization, and forms of MPE estimation.

2.5.3 Sampling in SPNs

In the first paper introducing SPNs [54] “sample face completions” were provided in Fig. 5 and discussed
in the experiments section, but it is not obvious from the paper how these were obtained. Inspection of the
source code,8 however, shows that they were obtained not by sampling in the narrower sense but instead
by MAP and MPE (which was thought to be correct for the graphs at hand, see Section 2.1.5). It generally
was not a particularly central topic in SPNs: For example, it was not mentioned once in the recent survey
by París, Sánchez-Cauce, and Díez [43]. For other types of graphical models, and in particular for Bayesian
networks [29, Chap. 12], the matter is studied much better [5, Chap. 11].9

Recently, however, there are efforts to use differentiable sampling procedures in SPNs to be able to employ loss-
based optimization with back-propagation as is typical in deep learning with NNs. To this end, the selection
of a child index when sampling from sum nodes is changed from the discrete and therefore non-differentiable
categorical distribution to a differentiable operation using the “Gumbel-Softmax trick” [30, 55]. The first
approach uses this formulation to train SPNs with new objectives and does not aim to improve the actual
sampling routine, making it an orthogonal direction of research to this thesis. The second approach uses
the differentiability to combine neural networks and SPNs into a fully differentiable architecture, permitting
training of the entire system jointly. Again, this does not focus on the actual sampling routine, beyond the
differentiable formulation. One disadvantage of that approach is that the natural sparsity in the normal
sampling procedure as described in the upcoming Section 3.2 is abandoned, and instead the entire SPN is
traversed. This is then compensated for by very fast vectorized operations which can even be accelerated by
GPUs.

Some of the best samples can currently be obtained from Einsum Networks, a vectorized implementation of
layered SPN structures mentioned in Section 2.5.1. Figure 2.7 shows images that are sampled conditionally
(as reconstruction sampling) and unconditioned on two datasets using that implementation. It is visible that
the SPNs that are learned did converge to a somewhat useful representation of the data, but sampling is still
perceptibly “blocky” due to the underlying PD structure.

Our experimental setup to generate Figure 2.7 was as follows:

• MNIST (top row): The dataset was the full grayscale 28× 28 MNIST dataset [31] with the usual train
and test splits obtained from Huggingface datasets [32]. The number of leaves and sums was set to
K = 40, the leaf distributions were chosen to be factorized Binomial distributions over n = 16 possible

8In particular, see code/src/spn/SPN.java line 137, method void completeLeftImg(Instance inst).
9See also the instructive course material Lecture notes on CS188 Fall 2013. Artificial Intelligence: Lecture 16, Bayes Nets IV, Sampling [1]
and Lecture notes on CS228 Winter 2021–22. Probabilistic Graphical Models: Sampling-based inference [13].
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(a) MNIST dataset: Instances from
the test data split

(b) MNIST dataset: Reconstruction
samples of the upper half using the
SPN conditioned on the lower half
of (a)

(c) MNIST dataset: Unconditional
samples from the SPN

(d) SVHN dataset: Test instances as
above

(e) SVHN dataset: Reconstructions of
the left given the right half of (d)

(f) SVHN dataset: Samples as above

Figure 2.7: Visualization of the generative capabilities of SPNs using the Einsum Networks implementation
[48]. The results clearly show the blocky nature stemming from the PD structure which assumes
independencies between rectangular regions of the images. This results in separate sampling
processes in the children of products and introduces clearly visible inconsistencies that are the
major shortcoming that shall be addressed in this thesis.

states (to give sharper images than with 255 states). 4 vertical and horizontal splits were performed in
the PD structure, corresponding to ∆ = 8 in the Einsum Networks paper. The training was performed
with online EM for 5 epochs with batch size 500 and step size 0.05.

• SVHN (bottom row): This closely followed the original procedure of Einsum Networks [48, Sec. 4.2] for
the 32× 32× 3 RGB color SVHN dataset in the cropped digits variant [40]. In summary, leaves were
chosen to be isotropic Gaussian distributions with K = 40. For the structure, scikit-learn k-means [46]
was performed to find 100 clusters, for which separate PD structures with 4 vertical splits were trained
each with online EM for 3 epochs with batch size 10 and step size 0.5.
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3 Methods

As motivated in the introduction in Chapter 1, sampling – the process of drawing instances according to a
given probability distribution – is relevant in many different contexts. As lined out in Section 2.5.3, this topic
is not particularly well-explored for SPNs. This chapter describes different procedures to perform it on the
distribution modeled by an SPN: Firstly, the standard sampling procedure from the literature is presented
and discussed. However, when applied to typical graph structures like binary trees or PD, that method has
weaknesses that are explored subsequently. This leads to the second part, which describes the guided sampling
approach contributed by this thesis and a discussion of possible alternatives.

3.1 Standard Sampling

To the best of our knowledge, the standard sampling procedure for SPNs has not been thoroughly analyzed
before, for which reason the full algorithm, as well as a discussion of its numerical stability, the computational
complexity, and a proof of its unbiasedness (consistency), are provided. This is important to show, since it
sheds light on the reason why sampling appears to produce subpar images as shown, for example, in Figure 2.7.
As it will turn out, is not because of the sampling procedure introducing distortions, but instead a problem of
the structures that are typically used.

3.1.1 The Algorithm

The general sampling routine is very similar to the simple approximate MPE computation given in Algorithm 2.1.
While that procedure is given in iterative form using a waitlist, the sampling routine in Algorithm 3.1 is
provided recursively to simplify proofs but is trivial to rewrite into an iterative form. The key difference is that
sampling occurs on the SPN and not the MPN, where sums have been replaced by maximums. In particular in
the typical sampling routine – here coined standard sampling – a child of a sum (corresponding to a mixture
component) is sampled according to the weights of the sum node at hand and the probabilities of the evidence
e, which are combined into new weights ˜︁w. This procedure again induces a tree, much like when computing
MPE on a selective SPN.

Note that due to performance reasons, a single upward pass should be performed before the sampling
procedure in order to store the evidence marginal probability N(e) for all nodes N of the SPN S. This
is similar to the UpwardPassMPN call in the MPE computation with Algorithm 2.1. With this trick, the
reweighted responsibilities ˜︁w in line 20 can be computed efficiently.
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1 Algorithm: ConditionallySample: A general framework for conditional sampling in SPNs
Input :Some partial (possibly empty) evidence e for RVs E

The root node of the SPN to sample from, with node(e) > 0
A Guide distribution to choose child indices in unconditioned sum nodes

Result :Complete evidence e′ for all RVs in sc(node) obtained from sampling

2 function ConditionallySample(e, node, Guide):
3 switch TypeOf(node) do
4 case leaf do
5 Y ← sc(node) \E
6 if Y = ∅ then
7 return e
8 else
9 Let Pnode be the distribution underlying node

10 Sample y ↝Pnode (y | e)
11 return e ∪ y

12 case product do
13 foreach Ci ∈ ch(node) do
14 e← ConditionallySample (e, Ci,Guide)
15 return e

16 case sum do
17 if sc(node) ∩E ̸= ∅ then
18 Let w be the weights of node
19 foreach Ci ∈ ch(node) do
20 ˜︂wi ← wiCi(e)

node(e)

21 Sample i ↝Cat (i | ˜︁w)

22 else
23 i ↝Guide (node) // Sample index from guidance distribution

24 return ConditionallySample (e, ch(node)[i],Guide) // Select ith child

25 function StandardGuide(node):
26 Let w be the weights of node
27 return i ↝Cat (i |w)

Algorithm 3.1: Algorithm for sampling from SPNs while optionally using guidance when sampling
from sum nodes. The standard guide is provided which selects children of sum nodes proportional to
the weight of the edge to them, effectively implementing the typical sampling routine used in the
literature (see Section 2.5.3). Instead of sampling such an index i only according to the weights w
by i ∼ Cat (i |w) as in StandardGuide, one could also imagine different guides for other objectives.
For this very reason, the case distinction in line 17 is required, as we could else always sample from
i ∼ Cat (i | ˜︁w) no matter the evidence marginal probabilities.
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Typically, probabilities are passed in log-space because else they might exceed the range of the usual floating
point numbers. In that case, the computation of the new weights can also be done numerically stable if the
log-likelihood of the children log(Ci(e)) and of the sum node log(node(e)) are given, by

˜︂wi =
wiCi(e)

node(e)
= exp

(︃
log
(︃
wiCi(e)

node(e)

)︃)︃
= exp

⎛⎜⎝log(wi)⏞ ⏟⏟ ⏞
∈ (−∞, 0]

+ log(Ci(e))⏞ ⏟⏟ ⏞
given

− log(node(e))⏞ ⏟⏟ ⏞
given

⎞⎟⎠
⏞ ⏟⏟ ⏞

∈ [0, 1]

.

While some entries might overflow the floating point range in log-space to the symbolic value −∞, they will
merely result in 0 after the final exponentiation. No entries will overflow since the sum of the ˜︂wi is known to
be 1. That suffices to allow sampling i ∼ Cat (i | ˜︁w).

The algorithm also demands input evidence e that has positive probability in the SPN, i.e. root(e) > 0. Usually,
this poses little practical difficulty. Often, at least some leaf nodes have infinite support like Gaussians and
therefore always contribute strictly positive probability mass (given a suitable structure). In other cases, the
evidence has to be of the right form to fulfill this condition. One should also keep in mind that conditionally
sampling some value x from a distribution P where the evidence e has probability of measure zero is an
ill-posed query in the first place, much like trying to compute P (x | e) where P (e) = 0. Also, if root(e) > 0
then in any recursive call of the algorithm the condition is fulfilled too, as will be shown in the proof of
Theorem 26. This is required for the algorithm to be well-defined in lines 10 and 20.

One can see that the algorithm is efficient (or tractable), since much like in Algorithm 2.1 each node is visited
at most once, in addition to the also linear marginalization upward pass (see Theorem 19):

Theorem 24 (Time complexity of Algorithm 3.1). Let an SPN S, partial evidence e, and Guide of constant
runtime be suitable inputs to ConditionallySample. Let the worst-case complexity of inference and conditionally
sampling form any leaf be O(l). Let the number of children in a sum node be m and the runtime of Guide in that
node be in O(m). Then Algorithm 3.1 runs in O(s · l), where s is the size of S (i.e. the number of edges).

In particular, if l is a constant, Algorithm 3.1 is linear in s. The theorem assumes that Guide has runtime in
O(m), where m is effectively the length of ˜︁w. The StandardGuide fulfills this condition (compare line 27).
However, the statement is naturally extendable to different Guide runtimes.

3.1.2 Unbiasedness

We now continue by proving that the standard sampling routine is indeed consistent with the SPN, i.e. that
it samples from the distribution encoded by the SPN without introducing any bias. To this end, we adopt
the consistency property commonly used for sampling from Bayesian networks [1] by using the notion of an
induced probability of a randomized algorithm [19, Sec. 5]:

Definition 25 (Consistency/Unbiasedness of a sampling routine). Let X and E be disjoint sets of RVs, e ∈
val (E), and B(x, e) any distribution over X ⊎ E, where either one of X and E may be empty. Let A(e) be
a probabilistic algorithm that computes the remaining evidence x ∈ val (X). We call A consistent with B or
unbiased iff for the distribution IA(e)(x) induced by the randomness of A, it holds that for all x ∈ val (X),
IA(e)(x) = B (x | e), if B(e) > 0.
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The requirement B(e) > 0 reflects the analog requirement on the inputs e and node to Algorithm 3.1.

Now we can show that the algorithm is correct in a probabilistic sense. The condition X ⊎ E ⊇ sc(S)
was chosen over X ⊎ E = sc(S) to conveniently allow the theorem to be applied in the inductive proof
without requiring any auxiliary theorems. We also acknowledge the fact that Algorithm 3.1 returns e ∪ x,
but for the sake of the proof we only consider x (as required by Definition 25) since the original e remains
untouched in each step. Note, that the SPN is assumed to be complete and decomposable, not just valid and
also not just complete and consistent, which are both weaker properties (see also Figure 2.4). In practice,
however, completeness and decomposability are the typical means of showing validity anyway, so the practical
applicability of the theorem is not significantly constrained. Therefore, no attempt at lifting the restriction
was undertaken.

Theorem 26 (Consistency of standard sampling). Let S be a complete and decomposable SPN. Let X and E be
disjoint sets of RVs and e ∈ val (E) (incomplete) evidence with S(e) > 0. Either one of X and E may be empty,
but X ⊆ sc(S) and X ⊎E ⊇ sc(S). Then ConditionallySample (e,S,StandardGuide) is consistent with S.

Proof. Let S, X, E, and e be defined as above.

To ensure that the algorithm is well-defined in the recursive calls, we first note that if S(e) > 0, then in
any occurring recursive call the evidence e has positive probability too. This can be shown by a simple case
distinction as follows: If S is a leaf, no recursive call will occur and there is nothing to show. If we are in a
product node, then S(e) =

∏︁
C ∈ ch(S)C(e). In that case, S(e) > 0 can only happen if for all children C it

holds that C(e) > 0, since we know that C(e) ≥ 0 and C(e) = 0 would imply S(e) = 0. Similarly, if S is a
sum node, then at least one of the children with positive weights must have propagated positive probability
mass upward. In turn, one such child will be selected in line 21. We can therefore assume without loss of
generality that N(e) > 0 for any root node N that the algorithm is recursively called with.

Let Ie(x) := IConditionallySample(e,S, StandardGuide)(x) be the induced distribution and x ∈ val (X) arbitrary but
fixed. We show Ie(x) = S (x | e) by structural induction on the depth of S. The depth d(S) of the DAG S is
zero iff it is a leaf (see Definition 15), yielding that case as the only base case that needs to be considered:

Base case (d(S) = 0): In this case the algorithm will jump to line 5. Let Y = X \E, i.e. the set of variables
without evidence. If Y = ∅, the algorithm will just deterministically return e in line 7, i.e. with probability

S (y | e) = S(y, e)
S(e)

(Y = ∅)
=
S(e)
S(e)

= 1.

Else, i.e. if Y ̸= ∅, let P be the distribution underlying S. Then the result is e complemented with a sample
y ∼ P (y | e), which also follows the distribution defined by S: P (y | e) = S (y | e).

Induction step (d(S) 〜 d(S) + 1): Assume Ie(x) = S ′ (x | e) holds for any SPN S ′ of depth d(S ′) ≤ n
(induction hypothesis, “IH”). Let S be an SPN of depth d(S) = n+ 1. We need to show Ie(x) = S (x | e) for
the two possible types of nodes S:

1. S is a product node: Then the algorithm jumps to line 13. Since S is decomposable, all K children
Ci for i ∈ {1, . . . ,K} have disjoint scopes and we can define pairwise disjoint Yi := (sc(Ci) \E) ⊆X.
Intuitively, these are the RVs that need to be sampled in that child node and it is simple to see that for
any child Ci with i ∈ {1, . . . ,K}:
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a) Yi ⊆ sc(Ci),

b) Yi ⊎E ⊇ sc(Ci),

c) not both Yi and E can be empty since else sc(Ci) = ∅,

d) for any “surplus” evidenceY ′ ⊆
K⨄︁

j=1,j ̸=i

Yj it holds thatCi (yi | e,y′) = Ci (yi | e), since it is simply ig-

nored by the evaluation of inner nodes and leaves (see Proposition 6) as it is by ConditionallySample,
and

e) due to the definition of scopes (Definition 4), the Yj are a partition of X, i.e. X =
K⨄︁
j=1

Yj .

Properties (a)–(c) allow us to apply the IH. The iterative completion in lines 13 to 15 effectively results
in a product of child queries, where each call to ConditionallySample is conditioned on the sampling
result of the previous calls. However, by (d) and effectively by the decomposability of the product, these
calls are actually sampling from independent distributions and by (e) return a part yi ⊆ x, so we can
show that

Ie(x)

(lines 13–15,
(e))
=

K∏︂
i=1

I
ConditionallySample

(︄
e⊎

i−1⨄︁
j=1

yj ,Ci,StandardGuide

)︄ (yi)

(IH)
=

K∏︂
i=1

Ci

⎛⎝yi

⃓⃓⃓⃓
⃓⃓ e ⊎ i−1⨄︂

j=1

yj

⎞⎠ =

K∏︂
i=1

Ci

⎛⎝yi

⃓⃓⃓⃓
⃓⃓ e, i−1⨄︂

j=1

yj

⎞⎠
(d)
=

K∏︂
i=1

Ci (yi | e)

=
K∏︂
i=1

Ci (yi, e)

Ci(e)
=

K∏︁
i=1

Ci (yi, e)

K∏︁
i=1

Ci(e)

(Definition 15 &
Proposition 6)

=
S (y1, . . . ,yK , e)

S(e)
(e)
=

S (x, e)
S(e)

= S (x | e) .

2. S is a sum node: Then the algorithm jumps to line 17. Let w be the weights of the sum node S which
has K children. For any such sum node, it holds due to the definition of SPNs that

S (x | e) =S(x, e)
S(e)

=
1

S(e)

K∑︂
i=1

wiCi(x, e) =
1

S(e)

K∑︂
i=1

wiCi(e)Ci (x | e)

=

K∑︂
i=1

wiCi(e)

S(e)
Ci (x | e) =

K∑︂
i=1

˜︂wiCi (x | e) , where (3.2)

˜︂wi :=
wiCi(e)

S(e)
. (3.3)
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Note that since S(e) =
∑︁K

i=1wiCi(e), we have
∑︁K

i=1˜︂wi = 1 and the vector ˜︁w therefore forms a valid
parameter for a categorical distribution. Considering the case where sc(S) ∩E ̸= ∅ we can show the
correctness of lines 21 and 24 by

Ie(x) =

K∑︂
i=1

˜︂wiIConditionallySample(e, Ci, StandardGuide)(x)
(IH)
=

K∑︂
i=1

˜︂wiCi (x | e)
(3.2)
= S (x | e) . (3.4)

Since S is complete all children Ci ∈ ch(S) have identical scope sc(Ci) = sc(S), so we were allowed to
use the IH in the derivation above.

If on the other hand sc(S) ∩ E = ∅, we land in lines 23 and 24. However, in that case for any Ci

with i ∈ {1, . . . ,K} we know that Ci(e) = 1 and therefore also S(e) =
∑︁K

i=1wiCi(e) = 1, since all
variables in the identical scope of the nodes are marginalized out. Thus, StandardGuide samples an
index from exactly the same distribution as the line 21 and is thereby correct too, since for every of the
i ∈ {1, . . . ,K} outcomes

˜︂wi
(3.3)
=

wiCi(e)

S(e)
=

wi · 1
1

= wi. (3.5)

This concludes the proof by structural induction.

3.2 Guided Sampling

In some sense, one might think that Algorithm 3.1 is the perfect algorithm: We have a relatively simple-
to-implement sampling routine that is both tractable and consistent/unbiased. However, when we look
at the samples in Section 2.5.3 (see Figure 2.7), we can see that it still leaves a lot to be desired. In
particular, one can clearly see that the independence assumptions of product nodes lead to chunky images
with inconsistent patches. This leads to the realization that we actually want to find a Guide such that
ConditionallySample (e,S,Guide) is consistent with the data distribution pd used to estimate the SPN S,
instead of with S itself, since in practice there is some modeling error and therefore pd ̸= S. A large
contributor to this discrepancy is the heuristic nature of the structure generation that we require for scaling to
large datasets, like the PD and binary tree structures. In more formal terms, a possible problem statement
would be that we seek a Guide such that for the induced sampling distribution I

DKL(pd || I) ≤ DKL(pd || S). (3.6)

Unfortunately, it is very difficult to derive a concrete improved algorithm from this expression. Instead, it
helps to clarify the root problem of standard sampling on the discussed structures and derive an improvement
from there.

In product nodes, one needs to consider every single child since each one governs a separate part of the
instance, and we do not want patches of – say images – to be missing from the samples. In sum nodes, however,
we can make a decision, and there are good and bad choices for children to continue with. The outcome of
that decision decides whether samples are self-consistent or not, and can lead to the bad examples shown
in Figure 2.7 when done poorly by simply following Algorithm 3.1. The issue and afterward the proposed
solution shall be illustrated by the following Figure 3.1, showing a simple SPN as a distribution over two types
of digit images.
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×

+

p0(L) p0(R) p1(R)p1(L)

S(L) S(R)

S(L, R)

+

Dataset (0 and 1):

Figure 3.1: An illustrative SPN over a dataset consisting of digits 0 and 1 as shown in the upper left corner
(copied from the MNIST dataset [31]). The model boldly assumes that the left- and right-hand
sides of an image are independent: S(L,R) = S(L)× S(R). In each of the two children, a sum
over two leaves each model image halves showing a 0 and a 1, respectively. Samples of those
partial images are shown below the leaf nodes. We ignore the weights in this visualization, let us
just assume that they are all equally set to w = 1/2.

When we now sample from this SPN using the StandardGuide in Algorithm 3.1, we perform a depth-first
search of the DAG (with special handling of sum nodes). If we perform a left-to-right traversal in inner nodes
with multiple children, we first descend into S(L). It should be noted that the order of the traversal is arbitrary
when using the StandardGuide and that we just fix it to left-to-right for illustrational purposes. If there is
evidence about the left hand side, we sample i ∼ Cat (i | ˜︁w) (line 20), or else we choose p0(L) or p1(L) with
probability w = 1/2 each as defined by StandardGuide. Next, we need to sample the right-hand side of the
image using S(R). Assume that this time, no evidence is given about that variable and we need to sample.
That image patch is now chosen independently of the fixed and known left-hand side, and there is a w = 1/2
chance that we sample from the cluster matching the one from S(L), and a w = 1/2 chance to choose one
that results in the two halves showing parts of different digits. Those two possible outcomes are shown in
Figure 3.2.

If the child that was chosen in S(L) was known, one could have made a more informed decision in S(R) on
the right and produced a more consistent image. It, therefore, seems promising to consider different Guides
that given the choices so far choose upcoming sum node children representing clusters that are consistent
with the partial instance so far. To this end, we simply have to remember the current path through the SPN
by remembering the indices of children chosen so far, either by conditioning on evidence or by sampling a
child using the Guide. This is a simple extension to Algorithm 3.1, where in addition to tracking the current
path the Guide is also given it as an argument to incorporate that information. Note, however, that this also
means that only information on parts of the SPN that were already sampled can be incorporated. Lifting this
restriction is deferred to future work, but its effects are illustrated and discussed in Section 4.1 and Appendix
A.1.
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×

+

p0(L) p0(R) p1(R)p1(L)

S(L) S(R)

S(L, R)

+

Result:

(a) A reasonable sample of a 0 digit sampled from p0(L)× p0(R).

×

+

p0(L) p0(R) p1(R)p1(L)

S(L) S(R)

S(L, R)

+

Result:

(b) An inconsistent sample showing parts of both a 0 and a 1 sampled from p0(L)× p1(R).

Figure 3.2: Visualization of how sampling in the SPN of Figure 3.1 can produce (a) consistent and (b) incon-
sistent samples. The part of the SPN that is visited is shown in blue while the rest is grayed out.
The pink path shows the depth-first left-to-right graph traversal of the sampling algorithm. The
resulting partial images are shown at the bottom. It is apparent that the inconsistency in the
second traversal arises from choosing the wrong child in S(R), which is marked with a �.

33



Agent (Guide)

Current state
of the SPN
traversal

child index
selection
at

st+1

rt+1

path
st

reward
rt

Figure 3.3: This figure shows how the guided sampling algorithm can be viewed as an RL problem. The
diagram is analogous to Figure 2.6 from the foundations chapter. The environment is the graph
traversal process, which receives a sum child index at and then continues traversal to the next
sum node over possibly multiple leaves, products, and conditioned sum nodes. Eventually, it
provides the old and newly visited sum node indices path as a state st+1 and a reward rt+1 to
continue the episode at the next unconditioned sum node.

3.3 Reinforcement Learning Setting

A natural formulation of the problem of predicting a new sum node child based on the current partial path is
reinforcement learning as introduced in Section 2.4. Here, the states are partial paths and actions are sum
node children to be chosen. The children are identified by their index, and we, therefore, choose an arbitrary
but fixed ordering of the children of all inner nodes including products. The environment is provided by
Algorithm 3.1 and the agent is the Guide. Possible reward signals were discussed in Section 2.2, and the one
we will use is the reconstruction error MSE. The construction is visualized and explained by Figure 3.3.

More formally, we can define this setting for a specific SPN S as an MDPM = (S, Sinit, {As}s∈S ,R, p) following
Definition 21:

• The set of states S is the set of all partial and complete paths, i.e. all possible sequences of sum node
indices that can be visited by a traversal in the style of Algorithm 3.1. A possible sequence of states
when traversing the exemplary SPN from the previous section (Figure 3.1) is shown in Figure 3.4.

• There is a single initial state s0 = [ ] (the empty list).

• In a non-terminal state s, there is a sum node N where the next child index needs to be determined by
the actor. Let K be the number of children of N . Then the set of actions in s is just the set of all possible
indices As = {0, . . . ,K − 1}.

• The set of possible rewards is defined by the concrete reward that is used. In the case of negative
reconstruction errors, R ⊆ (−∞, 0].

• The dynamics function p : S ×R× S × A → {0, 1} is deterministic in the sense that any child index
that is chosen will certainly be visited next (see the discussion of the Markov property below). Let s
be a non-terminal state and N be the next sum node in the traversal order. Let K be the number of
children of N and let ch(N)[i] denote the ith zero-indexed child of N . Let R(r) be the distribution of
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S(L, R)

+
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[0, ]

[0, 1, ]

Figure 3.4: Illustration of the (partial) paths that occur when sampling as in Figure 3.2b. Note that the path
starts out as an empty list [ ] and each time a sum node is traversed, the index of the chosen
child node is appended (giving [0, ] and ultimately [0, 1, ]). This means that in product nodes, the
starting path of a child is the ending path of the preceding product node’s child (here [0, ]).

rewards r in that node. Then the dynamics function is given by:

p
(︁
s′, r

⃓⃓
s, a
)︁
:=

{︄
R(r) if a < K ∧ s′ = ch(N)[a]

0 else
.

This setting is loosely inspired by “Neural Architecture Search of Deep Priors: Towards Continual Learning
Without Catastrophic Interference” (2021) by Mundt, Pliushch, and Ramesh [39], where similar path states
were used to learn good NN architectures for a given dataset using tabular Q-learning. Similarly, we only care
about the reward at the end of the episode, i.e. the negative of the reconstruction error when the entire image
is sampled. We therefore want the reward rt in any terminal state st to equal the discounted future return of
all previous nodes, i.e. Gt′ = rt for all t′ ∈ {0, . . . , t}. In other words, we do not want to discount rewards in
any way, since we do not want the actor to implicitly favor shallower traversals of the SPN above deeper ones.
It therefore makes sense to set the discount factor to γ = 1.10 This decision is still reasonable if we want to
split the reward across multiple actions, where the negative reconstruction loss is provided only for newly
sampled parts of the instance and Gt eventually adds up to the full reconstruction error or similar metric.

It is also worth questioning whether the Markov property holds forM, i.e. whether the current state and
action fully determine the next state and the reward. Viewing the dynamics function as a proper probability
(see also [57, pp. 48f]), the marginal state-transition probability p (s′ | s, a) is 1 if s′ is the child at index a and
else 0. So the only question is whether the distribution over rewards is also fully defined by the current path.
This is however clearly the case since the path simply selects the leaf nodes that the RV slices are sampled
from, and the set of those leaves then implicitly defines the reward, independent of the partial intermediate
paths by which the leaves have been selected. The same argument holds for rewards in non-terminal states.
10As was done by Mundt, Pliushch, and Ramesh [39], see https://github.com/ccc-frankfurt/DP-NAS/blob/main/lib/

cmdparser.py#L72 at commit b8a2fd9463d670da1090b631fcfaf0a16b96ceda.
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1 Algorithm: Guided sampling using Q-Learning
Input :The sum node to choose a child index in

The current state s
A suitable Q table

Result :The index of the child of the sum node to continue in
The new state s′

// The current state s is represented as the list [i1, . . . , i|s|] of sum child indices
visited so far

2 function QLearningGuide(node, s, Q):
3 Let K be the number of children in node
4 i|s|+1 ← argmax

a∈{1,...,K}
Q(s, a) // Find the action a with maximum expected reward

5 s′ ← s ∥ i|s|+1 // Concatenate to form the new state
6 return i|s|+1, s′

Algorithm 3.2: The algorithm for providing a sampling guide for Algorithm 3.1 based on a learned
Q table for the MDPM for a specific SPN.

Finally, we are able to learn an optimal agent forM using either Q-learning or its double variant described
in Sections 2.4.1 and 2.4.2, respectively. To this end, we simply couple the traversal of Algorithm 3.1 and
the relevant learning algorithm like Algorithm 2.2 using a suitable Guide. That QLearningGuide is given in
Algorithm 3.2. It simply selects the most promising node index. In practice, however, one might add a random
tie-break for states of equal Q value to not introduce an exploration bias. Also note that the choice of setting
γ = 1 formally makes the convergence guarantees of both normal and double Q-learning (e.g. Theorem 23)
inapplicable, since γ ̸∈ (0, 1). Nonetheless, in practice and in particular for these episodic environments it still
works well.

3.4 Relation of Standard and Guided Sampling

Is is also noteworthy that the approach of obtaining a Q table for decision making in sum nodes does not
subsume standard sampling, it formally is something different. While on one hand the standard guide from
Algorithm 3.1 samples i ∼ Cat (i |w), the guided learning approach from Algorithm 3.2 deterministically
selects i = argmaxa∈{1,...,K}Q(s, a). If we changed line 4 to instead sample i ∼ Cat (i |Q(s, 1), . . . , Q(s,K)),
we obtain the modified QLearningGuide∗ and can show:

Theorem 27. For any SPN S there exists a (tabular) function qS such that for any e and x (with the restrictions
as in Theorem 26)

IConditionallySample(e, S, StandardGuide)(x) = IConditionallySample(e, S, QLearningGuide∗(·, ·, qS))(x). (3.7)

Proof. We first state qS explicitly and then show that the above statements holds. Each state s is either terminal
or encodes a path to exactly one sum node N as a surjection (i.e. there can be more paths s′ resulting in
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the same sum node N). If it is terminal, we arbitrarily choose qS(s, ·) = 0 as it is not used by Algorithm 3.1
anyway. If it is a sum node, let qS(s, i) := wi for all i ∈ {1, . . . ,K}, where K = |As| is the number of children
of N or equally the number of possible actions in s.

The proof is then formally again by induction on the depth of S (like in the proof of Theorem 26). However, it
suffices to only inspect what happens when the Guide is used in line 23 of Algorithm 3.1. This is because the
algorithms are equal in all other regards except for the bookkeeping of the states s, which however only has
an influence when the Guide is used. In the case of using the Guide, by construction, both StandardGuide and
QLearningGuide∗ sample from exactly the same distribution. Thereby the above statement (3.7) holds.

While such a qS is trivial to compute from an SPN S, it is not a real state-action value function since a
Q-learning agent follows the maximum action deterministically and does not sample from it. Therefore, one
cannot just view standard sampling and the tabular Q guide as parameters of the same induced distribution –
they instead do encode different but closely related ones. Also, note that actually sampling from qS would be
pointless since it encodes the same sampling distribution as when applying the simpler StandardGuide.

A possible future direction of a formal study of these procedures might try to formulate them as parameters of
the same distribution. This might then be used to reason about how Q-learning performs maximum likelihood
estimation (MLE) of some sort. The MLE solution of a problem is in turn closely related to the KL divergence11
and might be useful for showing whether equation (3.6) provably holds. This line of reasoning appears to be
much more promising than the pursuit of bounding the error of the related task of approximate MPE solvers,
where Mei, Jiang, and Tu conclude: “We also showed that it is almost impossible to find a practical bound for
approximate MAP solvers” [36].

11Loosely speaking, the MLE using n data points finds parameters θMLE of a model distribution m that minimize the distance to the
data distribution pd in the limit of infinite amounts of i.i.d. data: θMLE = limn→∞ argminθ DKL(pd(x) || m (x | θ)). This result is
well presented in the lecture material at https://web.stanford.edu/class/stats200/Lecture16.pdf, which in turn
references the relevant publications.
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4 Experiments

In this chapter, we investigate how the methods of the previous chapter perform empirically. The main question
that shall be answered is: In which cases can guided sampling using Q-learning improve the sample
quality beyond standard sampling and by how much? To this end, we first construct a simple task from
synthetic bivariate data and inspect how the methods perform. For a subsequent evaluation on larger datasets,
we first describe how the underlying SPNs were trained, the data and preprocessing steps that were used,
as well as the actual exploration of the different sampling procedures. The chapter closes with a qualitative
analysis of a few select settings and an exploration of different variations of sampling and MPE.

The implementation was mostly developed in Python [60] (targeting versions 3.8–3.10) and makes heavy use
of the general scientific libraries NumPy [23], SciPy [64], pandas [35] and Pytorch [45]. SPFlow (pre-release
version) [38] was used as the base SPN data model and structure generation and associated parameter learning
was mainly performed using EinsumNetworks [48]. Due to numerical issues, the RAT-SPN implementation of
SPFlow and its optimize_tf() method were not used successfully. The datasets were obtained from and
processed using Huggingface datasets [32].

4.1 Proof of Concept on Synthetic Data

As a first experiment, it is useful to inspect a very simple scenario where the full data distribution is properly
visualizable in 2D. To this end, let us consider a simple data distribution pd over two variables X and Y . The
data is defined as a mixture of two Gaussians N0 and N1 with mixture coefficients 0.5 each:

N0

(︃(︃
30
30

)︃
, Σ

)︃
and N1

(︃(︃
70
70

)︃
, Σ

)︃
,

where Σ :=

(︃
50 0
0 50

)︃
.

The distribution and a set of samples from it are plotted in Figure 4.1a. Presumably, an appropriate SPN
structure for this dataset would be a sum node over the two clusters with weight w =

(︁
0.5 0.5

)︁
. Each of

the clusters could then be modeled by a product over one univariate Gaussian for each of the RVs X and Y .
However, since we want to show what can be done when the structure makes independence assumptions
where it is not appropriate, the root node will be a product node. This corresponds to the assumption that X
and Y are independent, which they are clearly not since that is only the case within a single one of the clusters.
Each child of the product is then a sum node over two Gaussians, again with weight w =

(︁
0.5 0.5

)︁
. Each of

the leaves models the univariate Gaussian marginal of one of the RVs for a single cluster like N0, X(µ, σ2),
with mean µ = 30 and variance σ2 = 50. The structure of the SPN is shown in Figure 4.1b. As expected, the
standard samples drawn from the SPN are inconsistent, as is apparent by the new lumps of samples in the
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(a) The data distribution as isolines of the density of
the two clusters and some samples. The color
indicates the membership of the samples to the
clusters.
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(b) The SPN used for the initial evaluation. The sym-
bols (∗) and (‡) on the sum nodes help reference
them later.
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(c) Similarly to (b), this shows the data distribution in
the background and standard samples from the
SPN. They clearly show the inconsistencies that
we try to mitigate by learning guides.
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(d) Similarly to (b), this shows the data distribution in
the background and guided samples from the SPN
using Q-Learning. The color indicates member-
ship of the conditioning evidence to the clusters.
Only about 3/4 of the samples are consistent.

Figure 4.1: This figure visualizes the synthetic dataset task and the results of learning a guide. In particular,
the SPN used in the evaluation as well as standard and guided sampling results are shown. The
Appendix A.1 also visualizes guided sampling but shows separate plots for different conditioning
modes to illustrate when guiding is most effective.
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Figure 4.2: This illustrates how training progressed on the synthetic dataset. The blue scattered markers on
the main graph are the rewards for each episode, and the moving average over the most recent
1000 ones is shown in red on top. The black horizontal line is the reward obtained when using the
baseline of standard sampling (averaged over 2500 trails). The top is annotated with the decaying
ε values that were used in that phase (see Algorithm 2.2). The right shows a histogram of all
rewards obtained from training, showing that while the variance is large, most rewards are rather
high for this dataset and SPN. Overall, the diagram shows that the training does progress to a
regime of increased reward/decreased error. The visualization on the left-hand side is inspired by
Mundt, Pliushch, and Ramesh [39, Fig. 2].

top-left and bottom-right corners of Figure 4.1c. The likelihood of the real distribution pd is very low in those
regions and we would not expect samples there if we used a better model.

We then ran Q-Learning with the same parameters as later in the qualitative comparison Section 4.6.1 where
applicable. The dataset contained 25 000 samples (i.e. a single one for each episode of training) and the
evaluation of the final reward was the mean over 2500 trials. The progress of improving the reward during
training is shown in Figure 4.2, where we see a clear improvement each time we decrease the ε a step from 1.0
(purely random choices for exploration) to eventually 0.0 (always following the learned Q function). Recall
that the reward is just the inverse of the reconstruction error. However, a final MSE of about 242.57 is still
considerable, and it helps to look at Figure 4.1d to see that the samples fromN1 are reconstructed convincingly
but the ones of N0 only about half of the time. This is expected and shows a limitation of the path encoding.

There are two possible cases, where either X or Y is provided and the other one is to be conditionally sampled.
Suppose for now that X is given as evidence and Y is to be reconstructed. We note that the sub-SPN over X –
the sum node marked with (∗) – is visited first. Depending on the index of the child with the larger likelihood
of the value X, we either land in the state [0, ] or [1, ]. We know the most likely cluster that the data instance
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State ID Path Q Values (rounded) Next Sum Node

0 [ ] (empty) -523.86, -591.93 left (*)
1 [0, ] -55.24, -860.28 right (‡)
2 [0, 0, ] terminal —
3 [0, 1, ] terminal —
4 [1, ] -843.01, -43.16 right (‡)
5 [1, 0, ] terminal —
6 [1, 1, ] terminal —

Table 4.1: This table lists all possible states and the path they correspond to. The table also shows the Q
values that were learned and the node that the two actions (choose left, choose right) can be taken
in. Note that the Q table entries for terminal states are always zero per definition and therefore
omitted.

probably came from and select a child of the sum node over Y marked with (‡) in an informed way. This
is made apparent by the concrete Q table that was learned and is shown in Table 4.1. We can, for example,
clearly see that in state [0, ], in (‡) also the first node has to be chosen for a consistent sample. Indeed, this is
faithful to the training data. If, on the other hand, Y was provided as evidence and X was to be reconstructed
instead, we would again start in state [ ]. This time, however, we would not immediately move to the next
state by conditioning on the value of X, but would need to sample X first, and then consider Y . This decision
is therefore not based on the evidence about E = {Y }. That lack of distinctness is also reflected by the Q
table, which assigns both states a similar expected reward.

The Appendix A.1 goes into more detail on why the reward near −250 is to be expected based on an analytical
solution and how samples when conditioned on X and Y each look. This sheds some further light on the
strengths and weaknesses of the guided sampling method.

In summary, it is clear to see that the guide is able to learn what it can given the framework, i.e. choose sum
node children about which we do not have any given or sampled evidence yet in an informed way. However,
due to the limitation of the path encoding, certain inconsistencies cannot be avoided, resulting in a spurious
point cloud of instances in Figure 4.1d where none is present in the training data. While that is a central point
of further research, our work now continues with an evaluation of the presented guided sampling approach.
The question to be answered is whether the observations on this simplistic synthetic dataset also apply to
real-world datasets with two to three orders of magnitude more RVs.

4.2 Parameter and Structure Learning

The first step in the evaluation of the guided sampling method was obtaining some SPNs on which the
experiments could be carried out. To this end, the three different types of structures introduced in Section 2.1.4
were generated and parameters were learned each. The specific datasets that would be used were not of
particular interest at this point since the evaluation was carried out on image data of similar dimensions, for
which similar structures were expected. Note that while most datasets contain label information for supervised
learning, these were never used for training the SPNs since the analysis should apply to the wide range of
(unsupervised) density estimation tasks which subsume supervised learning.
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4.2.1 Choice of Leaf Distributions

In theory, any type of probability distribution of fitting domain can be used as a leaf for SPNs as defined in
Section 2.1.3. In practice, however, certain well-known ones are typically used, which include Gaussian and
Binomial distributions for grayscale and color image data [48, 50, 54]. Also note that both can be expressed
as an exponential family as described in Section 2.3. For the sake of numerical stability and computational
efficiency, the choice is typically further reduced to univariate distributions like Binomials or equivalent ones
like isotropic multivariate Gaussians, which are effectively a product of univariate Gaussians.

Since Gaussians are defined on continuous RVs and image data is typically available as discrete 8-bit pixels or
color values in {0, . . . , 255} ⊂ N, problems can occur when learning from dataset slices with no variation in
pixel values due to infinitesimal variances σ2 or when evaluating the model. To combat this it is beneficial
to just add uniform noise from [0, 1) to the data to perform dequantization [58, Sec. 3.1] [59, Sec. 3.1.3.3].
Also note that for full mathematical correctness, truncated Gaussians on the interval [0, 256) should be used
instead of normal Gaussians which have infinite support. As a typically used practical hack, samples can also
just be clipped to the respective data range and usual Gaussian distributions can then be used as a simple
approximation.

A benefit of Binomials over Gaussians is the generation of much sharper images since the continuity of
Gaussians introduces smeary values in between the usual discrete pixel values. An additional trick to produce
images that are easier to evaluate qualitatively as a human is the reduction of the number of possible discrete
states of the Binomial distribution from, say 256 (corresponding to 8 bit integers) to 16 (4 bits). With proper
rescaling at the end, this still produces images of sufficient quality but at the same time makes the borders of
structures in the image much clearer. By that, they allow for easier qualitative evaluation of the consistency or
lack thereof in generated images. Due to this, they were used for most of the evaluations where not noted
differently.

4.2.2 LearnSPN

The specific implementation of LearnSPN used in these experiments was learn_parametric() from
SPFlow [38], with only minor changes due to portability and parallelization performance issues. For the
clustering step in sum nodes, classic k-means was performed using scikit-learn [46]. For finding independent
features, the randomized dependence coefficient [33] was calculated and results were grouped by thresholding
at 0.3. If only a single RV was left, no more clustering was performed and a single leaf was created. Naive
factorization was performed once a cluster contained less than 1000 instances, i.e. a product node with a leaf
for each remaining RV in the sub-tree was created. All leaves were set to be univariate Gaussians N (µ, σ2)
where both mean µ and variance σ2 were estimated from the data.

Unfortunately, despite the parallelization to 12 CPU cores on a capable desktop machine, training still took
about 2 hours for the 28× 28 pixels MNIST dataset. This is due to the discovery of independent feature groups
to form product nodes, which scales very unfavorably in the dimension of the input as it computes pairwise
correlation statistics. It would therefore not scale to larger datasets without modifications.

However, a different problem with these types of structures was yet more limiting. To use reconstruction losses,
one has to be able to choose which parts of the image are to be reconstructed and which serve as conditioning.
Due to the very heterogeneous structure of the scopes, this is not very practical. It proved to be unfeasible
to find a slice of the image that did not (almost) always cause all visited sum nodes to be conditioned. This
is because different sum node children may choose different factorizations, which is especially problematic
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(a) The SPN arranged in a radial tree layout12, where the
root is at the center and the leaves are at the perime-
ter. The orange highlight on the left shows the section
of the tree that is analyzed in (b). Note that this layout
is only possible for tree-shaped SPNs like the one at
hand.
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(b) This shows how many leaves of the sub-SPN high-
lighted in (a) are responsible for each RV of the im-
ages. Black regions indicate that these pixels are
outside of the scope of the entire sub-SPN. Lighter
regions correspond to RVs that occur in many leaves.

Figure 4.3: Visualization of the structure of an SPN learned with LearnSPN over the MNIST image dataset
and a heatmap of the number of leaves that range over a selected sub-SPN.

in the upper parts of the SPN. Scope statistics of an exemplary sub-SPN and the greater SPN structure are
illustrated in Figure 4.3.

In conclusion, we have learned that these types of structures are not well suited for a first evaluation of the
sampling methods to be analyzed. Therefore, other structures based on Einsum Networks were used instead
as documented in the next section.

4.2.3 Poon-Domingos and Binary Tree Structure

The two main types of structures that were used are the PD and binary tree structure learned using EinsumNet-
works [48]. A major consideration for this was the training speed, which took from less than a minute to a few
minutes using GPU acceleration depending on the specific structure and dataset. After training, the vectorized
structure was disassembled and transferred to a data model that explicitly models the nodes and edges of
each individual node. That node-based structure is less efficient but facilitates traversal of the SPN graph that
would else be rather cumbersome. The translation was verified by making sure that the log-likelihood of the
test dataset split did not change beyond tiny numerical differences.

12Visualized using an interactive visual tool that makes use of graph-tool (https://graph-tool.skewed.de/).
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Nodes Paths
Structure Layers + × Leaf Total Edges Param. Term. Non-term. Total
PD-4-1 8 40 512 3136 3688 4643 6787 20 480 1396 21 876
PD-2-2 7 19 304 3136 3459 4002 6562 8192 547 8739
Binary tree 6 9 160 3136 3305 3568 6416 4096 273 4369

Table 4.2: This table provides statistics on the selected SPN structures and the numbers of path states in
it. The number of layers is the depth of the SPN from root to the deepest leaf. Param. is the
number of parameters of the entire SPN, consisting of sum node weights w and leaf distribution
parameters like n and p for Binomials. The number of paths corresponds to the number of states
in the MDPM for Q-learning.

A major issue with the proposed Q-learning approach is that all states have to be enumerated and also visited
sufficiently often in training. While space to store a large Q function as a table is less of a concern at first, the
fact that training time grows certainly is. Therefore it is very important to limit the size of the SPN in the
sense that the total number of possible paths stays relatively low, e.g. at a few thousand states for learning to
converge within less than an hour. Note that the number of leaves is not an issue and SPNs of such sizes are
still able to reasonably model small image datasets, at least when reducing the number of classes.

The SPNs that were used in later evaluations feature Binomial leaves with n = 16 instead of 256 states
as discussed previously. The parameters num_sums and num_input_distributions (called K in the
Einsum Networks paper [48]) were set to 4 for all structures. The training was performed using online EM
with updates after each batch, a batch size of 500, a step size of 0.05, and GPU acceleration. It was run until
convergence of the training loss, e.g. 5 epochs for the full MNIST dataset or 25 for the same one reduced to
the first two labels. The 5-fold increase in the number of epochs stems from the much shorter epochs and
therefore reduced number of EM updates when reducing the datasets to about a fifth. In total, three structures
were investigated, each generated to fit the concrete datasets at hand:

• PD-4-1: This PD structure was generated by splitting the image into 4 vertical stripes and performing
no splits on the vertical axis (1 slice). This is similar to what was done for Einsum Networks [48] as
shown in Figure 2.7.

• PD-2-2: This PD structure was generated by splitting the image both horizontally and vertically in half
(2 slices each). It was chosen as an alternative to PD-4-1.

• Binary tree: For this, no repetitions were performed and only a single splitting tree was generated to
obtain a single RV set cut and not run into issues similar to LearnSPN structures, where reconstruction
tasks are hard to design in a useful way. The splitting depth was set to 2.

The hyperparameters for the structure generators were chosen in a way that resulted in similar SPN sizes
and manageable numbers of paths. Some key statistics for the generated graphs on the MNIST dataset are
provided in Table 4.2, like the number of nodes of certain kinds. Note that they only significantly differ by
their number of sum nodes, where PD-4-1 has the most. Since those and their arrangement are crucial in
determining the number of possible sampling paths, PD-4-1 has about five times as many non-terminal states
as the binary tree structure. Note that we do not care that much about terminal states since they are effectively
ignored in Q-learning anyways. For datasets of different sizes, like SVHN, the statistics only changed by small
amounts.
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Name Source Instance Shape Channels #RVs #Training Ex. #Test Ex.

MNIST [31] 28× 28 1 (grayscale) 784 60 000 10 000
Fashion MNIST [66] 28× 28 1 (grayscale) 784 60 000 10 000
SVHN (cropped digits) [40] 32× 32 3 (RGB) 3072 73 257 26 032

Table 4.3: This table lists and compares the datasets that were used in the evaluation of guided sampling.
#RVs is the dimensionality of each instance, i.e. width × height × channels. #Training Ex. and
#Test Ex. are the numbers of examples in the training and test splits as described in the relevant
sources, respectively.

4.3 Datasets

To be able to quickly assess the quality of generated samples, image data was selected as the domain of
application of the sampling procedures. Furthermore, the mature and active field of machine learning for
computer vision has given rise to (a) a large number of datasets, (b) a variety of research on many different
aspects of image processing, and (c) high-quality implementations of many common techniques including
visualizations. Images can also be a challenging domain due to the high-dimensional nature of images of even
low resolution, as already tiny 32× 32 RGB images consist of 3072 RVs each.

In total, three image datasets were chosen due to their popularity and size. MNIST and Fashion-MNIST were
chosen as they are commonly used for prototype and proof of concept works due to their limited size and only
being grayscale. SVHN stands for Google Street View house number signs and is a larger dataset, in both its
spatial size and the added color depth [40]. Unfortunately, even larger datasets could not be used since the
SPNs were of very limited capacity and it is unclear what the meaning of the guided sampling evaluation
would be if the SPN cannot even remotely model the data distribution. Note that the SVHN “extra” split was
not used for training the SPN or the sampling guide. These datasets are also suitable because they were used
in the somewhat related publications on RAT-SPNs [50] (MNIST and Fashion MNIST) and Einsum Networks
[48] (SVHN). In both of the papers, additional datasets were used too, but to simplify the implementation
and qualitative visual evaluation only image datasets were used (and thus not, for example, 20 Newsgroups)
and the selection was cut down further. The lesser-known SEMEION dataset was not used and CelebA was
deemed too large for this initial evaluation. Examples of some dataset instances with their occlusion applied
are shown in the next section (Figure 4.4).

As mentioned above, the improvement gained by learning a guide (or the lack thereof) is only clear to interpret
if the SPNs reasonably model the data in the first hand. As the SPNs were very limited in size, an additional
variation of each of the datasets in Table 4.3 was considered. To reduce the complexity and have for each
class/label in a dataset at least as many leaves in the SPN, each dataset was reduced to its first two labels. In
MNIST and SVHN, this means that only data with the labels “0” and “1” was retained. In Fashion MNIST
only images tagged as “T-shirt/top” and “Trouser” were used in the reduced variant. Note that this label
information was again only used for splitting the data, and not for the actual training of the SPNs or the
sampling Guide.
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(a) Examples for the 2 slices variant
on full MNIST.

(b) Examples for the 4 slices variant
on full Fashion MNIST.

(c) Examples for the tree variant on
full SVHN.

Figure 4.4: This figure shows what area of the images was to be reconstructed in the different tasks in
orange. It also shows the three datasets used later in the evaluation, where MNIST and Fashion
MNIST are grayscale and SVHN are RGB color images.

4.4 Reconstruction Task

We train the guides for sampling using the error of reconstruction of partial images. That is, given some partial
image as evidence e, the reward is the negative of the MSE of the reconstruction with respect to the ground
truth. This means that we have to delete parts of the images in order to obtain the occluded image task to
learn on. Three methods were used in this thesis, of which all are visualized in Figure 4.4. They are:

• 2 slices: In this setting, the image was vertically sliced into two halves, of which either the left or the
right-hand side had to be reconstructed from the other one. This was used for evaluating the PD-4-1
and PD-2-2 structures, as in both cases the conditioning did not fix all sum nodes and therefore was
something to learn. The choice of which side was to be reconstructed was sampled uniformly in each
episode.

• 4 slices: Similarly to the previous setting, two or three slices out of four were provided as evidence and
it was used for the same structures. If conditioning fixed all sum nodes, the task was re-generated until
an SPN with an unconditioned sum node was found. That can happen on PD-2-2 if two slices from the
two different halves were provided.

• Tree: The previous two tasks were for the PD structure. The binary tree structure was trained with
a different task, which is specific to the SPN at hand. The structure has a sum node at the root over
several products that equally partition the scope into disjoint sets. In the case of binary trees, two such
sets are created and shared by all root node children. On partition was therefore randomly sampled and
evidence was provided for only that set of RVs.

In total, three datasets in both the full and reduced label variant and several structures and occlusions were
tested. The six dataset variants and five SPN and occlusion pairs resulted in a total of 6× 5 = 30 combinations.
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Figure 4.5: This figure visualizes the precise schedule used for allQ-learning runs over an example number of
episodes of 25 000 as was used later. If the number of episodes differed, the schedules contracted
or stretched accordingly, i.e. the first reduction of ε always occurred after 60% of the training
progress.

4.5 Q-Learning Configuration

The Q-learning Algorithm 2.2 has the following hyperparameters: the number of episodes to train, the
exploration factor ε, and the learning rate α. Similarly to the work on neural architecture search by Mundt,
Pliushch, and Ramesh [39], ε was decayed from a purely random exploration phase in the beginning to ever
more deterministic greedy behavior. In particular, the initial value of ε = 1 is decayed at 60%, 70%, 80%,
and 90% of the training progress by 0.25 each to eventually reach ε = 0. Similarly, the learning rate α was
exponentially decayed from 2−1 = 0.5 to eventually 2−5 = 0.031 25 in four equally spaced steps. Both the α
and the ε schedules are visualized in Figure 4.5.

Another point of consideration is the number of episodes to run. An appropriate number was determined by
running a grid search over episode counts of 200, 400, 600, 800, 1000, 2000, 4000, 6000, 8000, 10 000, 20 000
and 50 000. As shown in Figure 4.6, training for 25 000 episodes was certainly enough to let the Q table
converge to sufficient accuracy and thus was chosen for subsequent experiments. It is also noteworthy that all
structures converged after a similar number of episodes of training, despite having Q tables of varying sizes as
shown in Table 4.2.

The same figure also compares how normal and double Q-learning perform relative to each other. We can
see that the difference is negligible once several thousand episodes of training are done, which is required
anyway for convergence. Note that the evaluation was only performed on Fashion MNIST since it is expensive,
but the conclusions should hold for other datasets too since the time to convergence is mainly influenced by
the number of states, which is in turn only determined by the SPN structure and not the concrete dataset in
use. The following experiments all use double learning, but simple Q-learning should perform similarly.
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Figure 4.6: Comparison of the mean reward (over 1000 samples) after training guided sampling for a certain
number of episodes on the full Fashion MNIST dataset. Separate results are shown for the three
types of structures and normal as well as double Q-learning. Note that the horizontal scale is
logarithmic and fresh runs were started from scratch for each data point to prevent “lucky” runs
to distort conclusions. Progress toward higher rewards is already observed at a few hundred
episodes of training, but convergence occurs at around 10 000 to 20 000 episodes – curiously
regardless of the concrete SPN structure. Also, double Q-learning does not yield a significant
improvement or deterioration with respect to normal Q-learning.
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4.6 Comparing Standard and Guided Sampling

We have now chosen SPN structures, defined hyperparameters, and successfully trained them on several
datasets and their reduced variant. We also determined how to train a Guide using Q-learning. It is now time
to compare how guided sampling based on Q-learning performs when compared with standard (unguided)
sampling. To investigate this, several experiments were carried out which shall be presented in this section.
We first show and discuss the main comparison and insights and then investigate some select configurations
in more detail.

4.6.1 Quantitative Comparison

The first thorough comparison is shown in Figure 4.7. It is clear to see that while generally speaking
guided sampling does lower the error, the improvement is sometimes small. This effect is thus better
viewed in relative terms. We should first recall that the MSE is defined as the negative of the reward
r := −MSE, meaning that we want to maximize the reward to reduce the error by switching from standard
to guided sampling. Therefore in Figure 4.8a, the improvement

(︁
rguided − rstandard

)︁
/ rstandard or equivalently(︁

MSEstandard −MSEguided
)︁
/MSEstandard is shown in percent. In most cases, the error could be reduced by at

least a few percent. The effect is generally more pronounced with the reduced label variants of the datasets.
This supports the hypothesis that there is more to be learned when the SPN better models the data, since
groupings of similar instances can be identified better by the Q table. Also, the improvement is largest with
the binary tree structure and with the Fashion-MNIST dataset. However, there are a few cases where a slight
deterioration can be observed on full MNIST, namely with the PD-2-2 structure (2 slices) as well as PD-4-1
(4 slices). Additionally, in four of the ten cases on SVHN, no improvement or even a slight degradation of
error can be seen. In the other six cases, however, improvements of up to 10% are observable. Looking at the
entire set of experiments, we can conclude that in 24 out of all 30 cases the error could be reduced, and in 3
cases even by over 25%.

As touched upon in Section 3.4, the Q-learning guide is some combination of sampling with aspects of MPE:
While child indices in conditioned sum nodes and values in leaves are sampled, the guide is deterministic
– much like the argmax in Algorithm 2.1. While a future direction of research might consider using MPE
reconstruction errors as a reward too, one can also just use the Q table learned with sampling and use it
directly for MPE. The analogous visualization of the absolute scores as in Figure 4.7 for sampling is provided
in the appendix in Figure A.2. In short, it can be seen that the overall error is lower than for sampling as
one would expect it to be. Jumping directly to the relative comparison as provided in Figure 4.8b, we can
see that the improvement that we can observe by introducing a learned guide is significantly higher than for
sampling – even though we did not train the guide on that specific task and instead only on the closely related
one of sampling. In particular, on MNIST and with binary trees improvements of over 43% can be observed,
while the number of instances in which performance decreased by introducing the guide went back. For any
individual combination of the dataset, reconstruction task, and structure, improvements when sampling and
when performing MPE is roughly similar, suggesting that either of the evaluations is indicative of the other.

4.6.2 Qualitative Comparison

Next, it is interesting to inspect a few selected ones of the many experiments that were presented in the
previous section to gain some further insight into the guiding method. The first obvious question is whether
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Figure 4.7: This figure compares the mean squared error (MSE) when using standard and guided sampling
over several datasets and two reduction variants. The values were obtained by performing
2000 sampling operations. Lower values are better since they correspond to more accurate
reconstructions. The corresponding visualization for the case of MPE is provided in the appendix
in Figure A.2.
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(b) Qualitative comparison of the improvement gained by learning a guide for sampling and using it for MPE.

Figure 4.8: These bar charts show the relative improvement of the MSE when using guided over the baseline
of standard sampling (100%) over several datasets and two reduction variants in (a). In addition,
(b) shows the same comparison when performing MPE in both the conditioned sum nodes
and leaves. Note that the multiple rows of the absolute value comparison in Figure 4.7 have
been collapsed to multiple bars per SPN structure and reconstruction task since the distinction
between the guides is now expressed as a single value in relative terms. The data points were
again averaged over 2000 samples. Note that larger values are better since we want to increase
the reduction of the error caused by introducing guiding. Positive values indicate that guided
and negative values that standard sampling is better. 100% improvement would reduce the error
to zero and would correspond to a perfect reconstruction of the query evidence e to the full
underlying image.
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the larger improvements are already discernible. To this end, two structures that are very different in nature
shall be inspected on the Fashion MNIST dataset with reduced labels for better visual understanding. If we
expect to see a difference somewhere, it will probably be most pronounced on this dataset where the largest
improvements were observed as shown in Figure 4.8. Firstly, the binary tree structure and, since it showed the
largest improvement of the PD structures, the PD-2-2 (2 slices) structure shall be inspected. The comparison
of the standard and guided sampling is shown in Figure 4.9. Note that the quantization of the dataset as
discussed in Section 4.2.1 is retained in this image and therefore might look different than in other dataset
illustrations (quantization noise). The shown images were generated at random without cherry-picking. In
the first row, standard and guided samples on the binary tree structure with corresponding tree occlusions are
compared (4.9a and 4.9b). Inconsistency in this randomly generated SPN architecture would correspond to
the occurrence of more pronounced noise, similar to salt-and-pepper noise. The guide appears to reduce such
extremely noisy images somewhat, but there is still much that could be improved. The second row shows
the same comparison on the PD-2-2 (2 slices) structure. We can see some inconsistencies on the left (4.9c),
where both the two horizontal halves often do not match, but also the vertical two parts within each half are
inconsistent. The right (4.9d) contains about half as many images that are strongly inconsistent.

Again, it is interesting to look at MPE reconstructions as provided in Figure 4.10 for another view. Here, the
improvement by guiding on binary trees is arguably better perceptible then for sampling, and the results on
the right (4.10b) look more consistent than on the left (4.10a). It is, however, difficult to come to a final
judgment. In the case of the PD-2-2 structure, the difference between MPE and sampling is immediately
obvious by the more smooth but blurry images. Usually, we would expect sharp instances here, but since the
data is modeled by Binomials, the MPE query returns the mean of many such individual leaves and therefore
produces a smeary image. As is the case for sampling, guided MPE reconstructions (4.10d) show almost half as
many strong inconsistencies as unguided ones. The left- and right-hand sides of the guided MPE reconstructed
images appear to match the same type of clothing much more often as was the case for sampling.

It is also insightful to look at a visualization of the number of updates of the Q table cells that occurred during
learning. Figure 4.11 shows that the value q(s, a) for some s, a pairs is updated much more frequently than
others. The same could already be seen for the few states of the synthetic dataset scenario in Section 4.1 too.
This is, however, not avoidable since it mainly stems from the fact that non-terminal states containing indices
of nodes that are visited early in the traversal are visited much more often than later ones, and Q-learning is
designed to work under these conditions as long as training is performed sufficiently long. In this RL setting,
there is indeed an abundance of data. Additionally, due to the way conditioning is performed, some states are
only visited by the conditioning pass and not the agent and therefore not all actions in that state get “explored”,
coincidentally leading to intriguing staircase patterns. The Q table will still learn to act optimally for the tasks
that it had seen sufficiently often during training, meaning that validation and subsequent applications must
be performed on the same types of tasks. A possible point for optimization is to remove all terminal states
from the table since they can only ever contain 0 per definition as discussed above. This would reduce the Q
table size by about 94% on all structures as can be seen in Table 4.2. While requiring only trivial algorithm
changes, it would not change the update rule and by extent the overall speed of convergence.

A different way of viewing the results is by inspecting how the distribution of rewards of reconstruction
sampling changes during the course of training. To this end, Figure 4.12 compares the two extremes that
were observed in the quantitative sampling comparison in Figure 4.8a. On the left (4.12a), we see almost no
change in the distribution, neither in terms of the mean nor in terms of the percentiles or overall shape. On
the right (4.12b), we see that as soon as the greedy factor ε is decayed from part 6 onward, the distribution
shifts to the right in the direction of better reconstructions. In particular, in the last parts, the distribution
becomes increasingly skewed and the median improves more strongly than the mean. Also note that while the
95th percentile does not significantly change for the last four parts, the 5th percentile does so substantially. In
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(a) Standard reconstruction samples from binary
trees.

(b) Guided reconstruction samples from binary trees.

(c) Standard reconstruction samples from the PD-2-2
(2 slices) structure.

(d) Guided reconstruction samples from the PD-2-2
(2 slices) structure.

Figure 4.9: This figure shows randomly chosen standard and guided samples on two select structures where
a large improvement was observed by the introduction of guidance. The dataset is Fashion
MNIST reduced to the first two labels. All 7× 7 images are the same in all four plots, and the first
four and last three rows are each conditioned on the same pixels, respectively. In addition to the
luminance of the grayscale dataset, the turquoise hue was modified for a better distinction of the
values. While improvements of the right- over the left-hand side can be seen, the difference is
rather subtle.
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(a) Unguided MPE reconstruction from binary trees. (b) Guided MPE reconstruction from binary trees.

(c) Unguided MPE reconstruction the PD-2-2 (2 slices)
structure.

(d) Guided MPE reconstruction from the PD-2-2
(2 slices) structure.

Figure 4.10: This figure is analogous to Figure 4.9 and shows example reconstructions using standard and
guided MPE instead of sampling. The images and conditioning patterns are also the same to
aid comparisons.
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Figure 4.11: The left shows a visual representation of how often the entries in the Q table are visited. The
vertical extent shows all states in the SPN and the horizontal direction all possible actions each.
Note that each state has the same number of actions since this is about the binary tree structure
(on reduced MNIST). In general, there might be different numbers of actions |As| in different
states s. The number of states is much larger than the number of actions, making each cell
appear wider than tall. White areas indicate states without updates, which are likely terminal
ones that never receive updates in Q-learning per design. The right shows a histogram over the
update counts in the cells. A total of 25 000 updates were performed, i.e. one for every episode.
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(a) Training on MNIST with all labels and on PD-2-2 with
4 slices.
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(b) Training on Fashion MNIST with reduced labels and
on the binary tree structure with corresponding occlu-
sions.

Figure 4.12: This figure shows how the distribution of rewards shifts as the training of the guide progresses.
To this end, all 25 000 reward valueswere collected, divided into 10 equal parts, and the distribution
was plotted in a slightly different color each. Additionally for each graph, the mean is given in
thick black. Percentiles at 5%, 50% (median), and 95% are provided as gray dashed lines. The
shared vertical scale is omitted for visual clarity. More rewards further to the right are better.
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turn, this means that while the best reconstructions do not improve any further, particularly bad ones become
more scarce. This is likely just a by-product of decaying ε step by step. Overall, the distribution shift on the
left provides little insight into why training could not improve sampling in that specific case, but the shift
observed on the binary tree structure on the right confirms the successful improvement of sampling in that
scenario.

4.7 Exploring Variations of Conditioning in Sampling and MPE

There are multiple ways in which conditioning of a sum node N on some partial evidence e can be performed.
The one that is provably correct in the sense of not introducing any bias is the one where in a sum node with
conditioning, a child index i is sampled from the categorical distribution induced by the updated weights ˜︁w. It
is defined in lines 18 to 21 of Algorithm 3.1 and its unbiasedness/consistency was proven as Theorem 26. This
method is called SampleStandard in the context of this comparison. The goal of this comparison is to provide
an understanding of which components of ˜︁w are most relevant in the style of an ablation study. In total, these
types of conditioning were investigated and compared with each other and with the Q-learning approach:

• SampleStandard: Sample i ∼ Cat (i | ˜︁w), where ˜︁wj =
wjCj(e)
node(e) , w are the weights of the sum node N ,

and Cj the jth child.

• SampleWeights: Sample i ∼ Cat (i |w), where the conditioning by evidence e is effectively ignored
when choosing sum node children.

• SampleLikelihood: Sample i ∼ Cat (i | l), where lj =
Cj(e)
node(e) . In this variant, the mixture weights w

are ignored and effectively assumed to all be equally set to 1/K, where K is the number of leaves of N .

• Off: Sample i uniformly from {0, . . . ,K − 1}. This should perform the worst as it ignores both the SPN
weights as well as the evidence e. It is equal to SampleWeights, where all K weights are changed to
w′
j = 1/K.

Note that the above choices are only considering the conditioning, and not the operation performed in sum
nodes without evidence, where the Guide is still used. In the leaves (conditional) sampling is still performed.
The Q-learning approach should ideally outperform all of them.

Similarly, one can imagine the same methods to be applied in MPE computation, where we are taking the
argmax over the varying responsibilities ˜︁wj instead of sampling from them. In addition to the different
conditioning modes, the operation in unconditioned leaves changes from sampling to MPE as well. The
following methods were considered:

• MPE: Choose i = argmax
j ∈{0,...,K−1}

˜︁wj deterministically.

• MaxWeights: Choose i = argmax
j ∈{0,...,K−1}

wj deterministically.

• MaxLikelihood: Choose i = argmax
j ∈{0,...,K−1}

lj deterministically, where l is defined as for SampleLikelihood.

• Off: Sample i uniformly as above, i.e. choose a random child index.

57



Visualizations of the absolute performance of these variants are given as background information in the
Appendix A.3. Here, the focus lies directly on the relative comparison, where all of the three methods in the
sampling and MPE variant each are compared to the corresponding Off variant.

The resulting relative improvement over that baseline is given in Figure 4.13 for sampling and in Figure 4.14
for MPE. Note that the evaluations were performed using the very same Q table as in the comparison above in
Section 4.6.1. We can see that first of all, the results on the full Fashion MNIST datasets are very different
from the rest, in that sampling only by the weights strongly increases the error over the respective Off baseline.
The likelihood of the evidence e appears to be of particular importance in that case. In general, it is clear
to see that at least on MNIST and Fashion MNIST, the inclusion of the evidence is crucial for both good
sampling and MPE, and much more important than the weights or a learned Q guide. Interestingly, this
does not always seem to be the case for MPE on SVHN. Aside from that case, combining both weights and
evidence in SampleStandard/MPE usually improves over the SampleLikelihood/MaxLikelihood variant, even
if SampleWeights/MaxWeights alone performs even worse than Off. The theoretical analysis of standard
sampling in Section 3.1 and the good performance of MPE from Algorithm 2.1 are confirmed in that they are
the best of all unguided methods, where both weights and evidence likelihood are crucial for good sampling
performance. They are only topped by the learned guide, although relatively speaking, weights and evidence
likelihood are more important than that.
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Figure 4.13: Improvement of the various sampling variants SampleWeights, SampleLikelihood, Sample-
Standard, and guided sampling with Q-learning compare relative to the Off baseline (100%).
More is better. The average rewards were estimated over 2000 samples and the absolute error
is shown in the Appendix A.3.
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Figure 4.14: Improvement of the various MPE computation variants MaxWeights, MaxLikelihood, MPE, and
guided MPE with Q-learning over the Off baseline, analogously to Figure 4.13. The absolute error
is shown in the Appendix A.4.
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5 Conclusion and Future Work

As we have motivated in the introduction, probabilistic modeling offers many advantages over the prevalent
deep neural networks, and SPNs are one of the more practical approaches to that. While they have since
been applied to more and more challenging density estimation, classification, and out-of-data detection tasks,
sampling remains one of their weaknesses. The conditionally and unconditionally sampled instances of, for
example, images often show high-quality subregions but the overall appearance shows inconsistent patches. To
investigate this, a formal analysis of the standard sampling method showed several properties: The algorithm
is (1) tractable, i.e. it runs in linear time in the size of an SPN, (2) correct, in the sense that it samples from
the distribution encoded by the SPN without any bias, and finally (3) that it is numerically stable.

Nonetheless, there is still much room for improvement, since the heuristic structures like PD and binary
tress necessary for scaling to large data domains make wrong independence assumptions which in turn
produce inconsistent samples. For this reason, the guided sampling procedure was presented and analyzed.
It keeps book on the path that the current sampling run has since taken through the SPN and learns how
to sample later parts accordingly. It does so in a reinforcement learning setting with tabular normal and
double Q-learning, where the task is to reconstruct occluded images with little error. Subsequent evaluation
on synthetic data showed that the approach is indeed feasible in principle but also confirmed that there are
further opportunities to improve the framework. A qualitative and quantitative comparison of standard and
guided sampling on several SPNs, occlusion types, and three typical image datasets showed that the method
indeed mostly improves the sample quality significantly, although in a few cases it did decrease performance.
The improvement was mostly clear to observe in quantitative error comparisons and less visually apparent on
individual images. In the course of the evaluation, typical convergence times were discovered empirically and
it was shown that normal and double Q-learning perform similarly. Finally, some experiments were carried
out to discover the relevance of different parts of the standard sampling procedure and MPE computation. It
was shown that both the weights of a sum node and the likelihood are both important, and most effective in
the provably unbiased combination.

In conclusion, it is apparent that the learned guide provides an improvement over standard sampling at the
cost of relatively cheap tabular Q-learning with good convergence properties. However, there is much work
to be done for improving the reinforcement learning setting with better path encodings, scaling the guide
learning to larger SPNs, and more.

One limitation that was discussed is that the state that the guide can base decisions on does not incorporate
information that is modeled in parts of the SPNs that come later in the top-down left-to-right traversal. An
obvious remedy would be to traverse the states in a different order, where for example sorting them by the
fraction of RVs in the scope having evidence would perhaps be a good first choice. In that case, however, the
state would need to carry that information too, e.g. by interspersing child indices of the product nodes that
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are currently traversed, and not only child indices of sum nodes anymore. While it is a promising idea, it
would, however, lead to a further explosion of the already large state-space. This further adds to the very
central problem of increasing the number of states, which currently limits the size of the SPN structures to
complexities often insufficient for real-world applications. As Q tables scale linearly in the number of states
and that number can increase exponentially in certain SPN structures, it seems promising to employ function
approximators like neural networks. They might perform better due to the discovery of hidden symmetries
and redundancies in the path information, e.g. by implicitly finding groups of sub-paths that result in similar
predictions later in the SPN. Recurrent neural networks might also be a very natural choice for the sequential
nature of the path traversals, which were initially investigated, but the approach was scaled back to first
obtain a working system using tabular Q-learning. This is the main avenue for improvement. The usually
data-hungry deep neural network learning methods are particularly applicable here since there is an almost
unlimited supply of training data as long as there are sufficient instances from the data domain, although each
data instance can produce many paths. One might also consider using experience replay to stabilize learning
of the function approximators. Another approach would be to learn an ensemble of guides, for example by
stacking, each with different path encodings corresponding to different sum child orders.

Typically in deep generative modeling of images using connectionist models, mostly unconditional sampling
(as in plain GANs) and also different types of target metrics like FID and KID scores are used. They could
then also be employed as a reward for learning a guide. They were not used in our evaluation since they
were deemed less specific reward signals due to requiring batching. Furthermore, the appropriateness of the
measure in particular on the small and grayscale MNIST and Fashion-MNIST datasets is doubtful. Alternatively,
a GAN-style discriminator model could be learned to provide a reward signal, possibly providing a joint
framework for both conditional and unconditional sampling.

Using unconditional sampling with suitable different losses/rewards would also enable the consideration of
arbitrary structures, and not only very regular ones as was described when exploring to use SPNs generated
using the LearnSPN structure and parameter learner. This might also be interesting in discovering how much
the human bias in the assembly of the structure of SPNs might influence the difficulty of sampling. Of course,
structure learning algorithms more or less subtly induce bias towards certain structures too but that one is
deemed to be much less severe due to the diverse structure generated by many learners. Validating this claim
could be an interesting future research topic.

Another consideration is the applicability of the method and empirical conclusions to other domains that
are not images. We reckoned that the main properties depend more on the SPN structure than the actual
data domain since the guidance learning never has direct access to the images used in this thesis. This claim
should, however, still be backed by further experiments.

Finally, further theoretic analysis of the sampling routine might provide more justification for the approach. For
this, one could continue where Section 3.4 stopped and attempt to show that the guided sampling procedure
is indeed more similar to the data distribution than the SPN itself. As part of that, the delicate interplay of
aspects of both sampling and MPE needs to be investigated further. Maybe, when using MPE reconstructions
as the base for training rewards, a guide can also produce a good sampling guide, as the reverse seems to be
the case.
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Appendix

This chapter provides supplementary material for select topics as referenced in the main part.

A.1 Analytical Solution for Sampling from the Synthetic Dataset

We want to show that in the synthetic data scenario of Section 4.1 in expectation we will see a mean reward
of just below −250 when training and evaluating on datasets of sufficient size. Recall that the expected error
is E [MSE(x, xtrue)] = E

[︂
∥x− xtrue∥22

]︂
= E

[︁
(x− xtrue)

2
]︁
, where the expectation is over the reconstruction x

being sampled from an SPN child and xtrue being sampled from the data distribution pd. We also note that we
always only have to reconstruct a single variable as the other one is given as evidence, allowing us to simplify
the norm as done above. For now, let us ignore that we also usually normalize by the number of RVs, where in
this case we would divide by 2. We also know that both x and xtrue are Gaussian RVs, so we have:

E [MSE] = Ex∼N (µa, σ2
a), xtrue ∼N (µb, σ

2
b )

[︁
(x− xtrue)

2
]︁

(Gaussians are symmetric)
= Ex∼N (µa, σ2

a), x
′ ∼N (−µb, σ

2
b )

[︁
(x+ x′)2

]︁
(Sums of Gaussian RVs
are again Gaussian)

= Ez∼N (µa−µb, σ2
a+σ2

b )

[︁
z2
]︁

(︁
Var(V )=E[V 2]−E[V ]2

)︁
= Ez∼N (µa−µb, σ2

a+σ2
b )

[z]2 + Var(Z)

= (µa − µb)
2 + σ2

a + σ2
b

This also holds for y and ytrue, respectively.

Suppose that we knew the ideal guide based on the optimal q∗, which we indeed successfully approximated
as can be seen by the fact that learning in this simplistic setting has converged. Then we would reconstruct
one of the variables in the query Q and the other one is therefore given as part of the evidence E. Four cases
(i)–(iv) can occur:

• E = {X} and Q = {Y } (see Figure A.1a):

(i) x ∼ N0: Then we would condition on X and presumably land in the state [0, ]. We ignore the
small possibility of choosing the wrong child since for this to happen, x− µ0 would have to
be unlikely large. According to the first line of Table 4.1 we would choose the first child since
it has maximum expected reward, and according to q∗ we would probably choose the same
since that choice will produce a consistent sample. Then E [MSE] = (µ0 − µ1)

2 + σ2
0 + σ2

1 =
(30− 30)2 + 50 + 50 = 100.
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Figure A.1: This contrasts how different occurrences of the conditioning evidence E in the path encoding
may result in vastly different samples. In this concrete SPN from Figure 4.1b, X is determined
before Y . Therefore, when reconstructing Y given X in (a) the results are consistent, but the
other way around in (b) they are only sometimes, as discussed in the analytical inspection above.

(ii) x ∼ N1: This is analogous to the previous case, where we consistently sample from the second
cluster and have E [MSE] = (70− 70)2 + 50 + 50 = 100.

• E = {Y } and Q = {X} (see Figure A.1b):

(iii) y ∼ N0: Then according to the first line of Table 4.1 we would choose the second child, or
according to q∗ we would probably choose each child with equal probability since we have no
way of knowing better in state [ ]. In any case, half of the time this is consistent by accident,
and half of the time it is not. This results in E [MSE] = (30 − 70)2 + 50 + 50 = 1700 and
E [MSE] = (30 − 30)2 + 50 + 50 = 100, respectively. In expectation over both scenarios, we
have an MSE of (1700 + 100)/2 = 900.

(iv) y ∼ N1: This is analogous to the previous case, that is E [MSE] = 900.

In summary, since each of the four cases occurs with equal probability, we have an MSE of (100 + 100 + 900 +
900)/4 = 500. Since we normalize by 2 this results in the expected reward of r = −500/2 = −250. Note that
in reality, the expected reward will be ever so slightly lower by tendency, as there is still the small possibility
of the dataset containing a sample that lies near the data points of the other cluster than it was drawn from.
This can occur since multivariate Gaussians, be they isotropic or not, will give even areas of such unlikely
events non-zero density.
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A.2 Additional Results of the Quantitative Comparison

In the quantitative comparison of standard and guided sampling in Section 4.6.1, only relative improvements
from introducing guidance for MPE computations are provided. This appendix provides the equivalent of the
absolute values comparison in Figure 4.7 but for MPE. Both figures share the same vertical scale and data
point layout for easy comparison.
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Figure A.2: This figure compares the mean squared error (MSE) when using standard and guided (“Q”) MPE
computation over several datasets and two reduction variants. The values were obtained by
performing 2000MPE operations. Lower values are better since they correspond tomore accurate
reconstructions.
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A.3 Additional Results of Exploring Variations of Conditioning in Sampling and
MPE

The different conditioning modes are explained in Section 4.7, where relative comparisons are provided in
Figures 4.13 and 4.14, respectively. This section provides the absolute values of the mean rewards for each of
the combinations. The two visualizations shown below both share the same vertical MSE scale and data point
layout for easy comparison.
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Figure A.3: This comparison shows how different variations of the conditioning in the sampling affect the
reward on various datasets, SPN structures, and occlusions. The mean reward is taken over 2000
random reconstructions. Lower is better.
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2000 random samples. Lower is better.
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